2021高三数学北师大版(理)一轮教师用书:第8章 第5节 空间向量的运算及应用 .doc
《2021高三数学北师大版(理)一轮教师用书:第8章 第5节 空间向量的运算及应用 .doc》由会员分享,可在线阅读,更多相关《2021高三数学北师大版(理)一轮教师用书:第8章 第5节 空间向量的运算及应用 .doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五节空间向量的运算及应用最新考纲1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量及平面的法向量.5.能用向量语言表述线线、线面、面面的平行和垂直关系.6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理1空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量方向向量A、B是空间直线l上任意两点,则称为直线l的方向向量法向量如果直线l垂直于平面,那么把直线l的方向向量n叫做平面的法向量共线向量(或
2、平行向量)表示空间向量的有向线段所在的直线互相平行或重合的向量2空间向量的有关定理(1)共线向量定理:对空间任意两个向量a,b(b0),ab的充要条件是存在实数,使得ab.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使pxayb.(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组x,y,z,使得pxaybzc,其中,a,b,c叫做空间的一个基底3两个向量的数量积(1)非零向量a,b的数量积ab|a|b|cosa,b(2)空间向量数量积的运算律:结合律:(a)b(ab);交换律:abb
3、a;分配律:a(bc)abac.4空间向量的坐标表示及其应用设a(a1,a2,a3),b(b1,b2,b3)向量表示坐标表示数量积aba1b1a2b2a3b3共线ab(b0,R)a1b1,a2b2,a3b3垂直ab0(a0,b0)a1b1a2b2a3b30模|a|夹角a,b(a0,b0)cosa,b5空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1l2n1n2n1n2l1l2n1n2n1n20直线l的方向向量为n,平面的法向量为mlnmnm0lnmnm平面,的法向量分别为n,mnmnmnmnm01对空间任一点O,若xy(xy1),则P,A,B三点共线2对空间任
4、一点O,若xyz(xyz1),则P,A,B,C四点共面3平面的法向量的确定:设a,b是平面内两不共线向量,n为平面的法向量,则求法向量的方程组为一、思考辨析(正确的打“”,错误的打“”)(1)空间中任意两非零向量a,b共面()(2)若A,B,C,D是空间任意四点,则有0.()(3)设a,b,c是空间的一个基底,则a,b,c中至多有一个零向量()(4)两向量夹角的范围与两异面直线所成角的范围相同()答案(1)(2)(3)(4)二、教材改编1设u(2,2,t),v(6,4,4)分别是平面,的法向量若,则t()A3B4C5D6C,则uv262(4)4t0,t5.2在平行六面体ABCDA1B1C1D1
5、中,M为A1C1与B1D1的交点若a,b,c,则下列向量中与相等的向量是()AabcBabcCabcDabcA()c(ba)abc.3已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是()A(1,1,1)B(1,1,1)CDC设n(x,y,z)为平面ABC的法向量,则化简得xyz.故选C.4已知a(2,3,1),b(4,2,x),且ab,则|b|_.2ab,ab0,即86x0,x2.b(4,2,2),|b|2.考点1空间向量的线性运算用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形(2)将已知向量和所求向量转化到三角形或平行四边形中(3)利
6、用三角形法则或平行四边形法则把所求向量用已知基向量表示出来1.如图所示,已知空间四边形OABC,其对角线为OB,AC,M,N分别为OA,BC的中点,点G在线段MN上,且2,若xyz,则xyz_.连接ON,设a,b,c,则()bca,aabc.又xyz,所以x,y,z,因此xyz.2.如图所示,在平行六面体ABCDA1B1C1D1中,设a,b,c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:(1);(2);(3).解(1)因为P是C1D1的中点,所以aacacb.(2)因为N是BC的中点,所以abababc.(3)因为M是AA1的中点,所以aabc,又ca,所以a
7、bc.空间向量的线性运算类似于平面向量中的线性运算考点2共线(共面)向量定理的应用证明三点共线和空间四点共面的方法比较三点(P,A,B)共线空间四点(M,P,A,B)共面且同过点Pxy对空间任一点O,t对空间任一点O,xy对空间任一点O,x(1x)对空间任一点O,xy(1xy)如图,已知E,F,G,H分别为空间四边形ABCD的边AB,BC,CD,DA的中点(1)求证:E,F,G,H四点共面;(2)求证:BD平面EFGH.证明(1)连接BG,EG,则.由共面向量定理的推论知E,F,G,H四点共面(2)因为(),所以EHBD.又EH平面EFGH,BD平面EFGH,所以BD平面EFGH.(1)本例(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高三数学北师大版理一轮教师用书:第8章 第5节 空间向量的运算及应用 2021 数学 北师大 一轮 教师 空间 向量 运算 应用
限制150内