2018年度中考点专刊资料训练考点20等腰三角形和等边三角形.doc





《2018年度中考点专刊资料训练考点20等腰三角形和等边三角形.doc》由会员分享,可在线阅读,更多相关《2018年度中考点专刊资料训练考点20等腰三角形和等边三角形.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、|2018中考数学试题分类汇编考点20 等腰三角形、等边三角形和直角三角形一选择题(共5小题)1(2018湖州)如图,AD,CE分别是ABC的中线和角平分线若AB=AC,CAD=20,则ACE的度数是()A20B35C40D70【分析】先根据等腰三角形的性质以及三角形内角和定理求出CAB=2CAD=40,B=ACB=(180CAB)=70再利用角平分线定义即可得出ACE=ACB=35【解答】解:AD是ABC的中线,AB=AC,CAD=20,CAB=2CAD=40,B=ACB=(180CAB)=70CE是ABC的角平分线,ACE=ACB=35故选:B2(2018宿迁)若实数m、n满足等式|m2|
2、+=0,且m、n恰好是等腰ABC的两条边的边长,则ABC的周长是()A12B10C8D6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解【解答】解:|m2|+=0,m2=0,n4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10故选:B3(2018扬州)在RtABC中,ACB=90,CDAB于D,CE平分ACD交AB于E,则下列结论一定成立的是()ABC=ECBEC=BECBC=BEDAE=EC【分析】根据同角的余角相等可得出BCD=A,根据角
3、平分线的定义可得出ACE=DCE,再结合BEC=A+ACE、BCE=BCD+DCE即可得出BEC=BCE,利用等角对等边即可得出BC=BE,此题得解【解答】解:ACB=90,CDAB,ACD+BCD=90,ACD+A=90,BCD=ACE平分ACD,ACE=DCE又BEC=A+ACE,BCE=BCD+DCE,BEC=BCE,BC=BE故选:C4(2018淄博)如图,在RtABC中,CM平分ACB交AB于点M,过点M作MNBC交AC于点N,且MN平分AMC,若AN=1,则BC的长为()A4B6CD8【分析】根据题意,可以求得B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的
4、长【解答】解:在RtABC中,CM平分ACB交AB于点M,过点M作MNBC交AC于点N,且MN平分AMC,AMN=NMC=B,NCM=BCM=NMC,ACB=2B,NM=NC,B=30,AN=1,MN=2,AC=AN+NC=3,BC=6,故选:B5(2018黄冈)如图,在RtABC中,ACB=90,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A2B3C4D2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可【解答】解:在RtABC中,ACB=90,CE为AB边上的中线,CE=5,AE=CE=5,AD=2,DE=3,CD为AB边上
5、的高,在RtCDE中,CD=,故选:C二填空题(共12小题)6(2018成都)等腰三角形的一个底角为50,则它的顶角的度数为80【分析】本题给出了一个底角为50,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小【解答】解:等腰三角形底角相等,180502=80,顶角为80故填807(2018长春)如图,在ABC中,AB=AC以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD若A=32,则CDB的大小为37度【分析】根据等腰三角形的性质以及三角形内角和定理在ABC中可求得ACB=ABC=74,根据等腰三角形的性质以及三角形外角的性质在BCD中可求得CDB=
6、CBD=ACB=37【解答】解:AB=AC,A=32,ABC=ACB=74,又BC=DC,CDB=CBD=ACB=37故答案为:378(2018哈尔滨)在ABC中,AB=AC,BAC=100,点D在BC边上,连接AD,若ABD为直角三角形,则ADC的度数为130或90【分析】根据题意可以求得B和C的度数,然后根据分类讨论的数学思想即可求得ADC的度数【解答】解:在ABC中,AB=AC,BAC=100,B=C=40,点D在BC边上,ABD为直角三角形,当BAD=90时,则ADB=50,ADC=130,当ADB=90时,则ADC=90,故答案为:130或909(2018吉林)我们规定:等腰三角形的
7、顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度【分析】根据等腰三角形的性质得出B=C,根据三角形内角和定理和已知得出5A=180,求出即可【解答】解:ABC中,AB=AC,B=C,等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,A:B=1:2,即5A=180,A=36,故答案为:3610(2018淮安)若一个等腰三角形的顶角等于50,则它的底角等于65【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案【解答】解:等腰三角形的顶角等于50,又等腰三角形的底角相等,底角等于(18050)=65故答案为:651
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年度 考点 专刊 资料 训练 20 等腰三角形 以及 等边三角形

限制150内