2022年高考数学概率中的易错题辨析 .pdf
《2022年高考数学概率中的易错题辨析 .pdf》由会员分享,可在线阅读,更多相关《2022年高考数学概率中的易错题辨析 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载高考数学概率中的易错题辨析概率是高中数学的新增内容,是衔接初等数学与高等数学的重要知识。这部分内容由于问题情境源于实际,贴近生活, 所以学生乐学且易于接受;但这部分内容由于易混点多,重复、遗漏情况不易察觉等,学生感觉易做但易错。下面我们将学生容易出现的错误列举出来,并加以辨别分析,以期对今后的学习提供帮助。一、概念理解不清致错例 1抛掷一枚均匀的骰子,若事件A: “朝上一面为奇数” ,事件B: “朝上一面的点数不超过3” ,求 P(A+B )错误解法:事件A:朝上一面的点数是1,3,5;事件 B:趄上一面的点数为1,2,3,P(A+B )=P(A)+P(B)=216363错因分
2、析:事件A:朝上一面的点数是1,3,5;事件 B:趄上一面的点数为1,2,3,很明显,事件A 与事件 B 不是互斥事件。即 P(A+B ) P(A)+P( B) ,所以上解是错误的。实际上:正确解法为:A+B 包含:朝上一面的点数为1, 2,3,5 四种情况P(A+B )=3264错误解法 2:事件 A:朝上一面的点数为1,3,5;事件 B:朝上一面的点数为1,2,3,即以 A、 B 事件中重复的点数1、3 P(A+B )=P(A)+P(B) P(A B)=4321212121错因分析: A、B 事件中重复点数为1、3,所以 P( AB)=62;这种错误解法在于简单地类比应用容斥原理)()()
3、()(BACardBCardACardBACard致错正确解答: P(A+B ) =P(A)+P(B) P(AB)=32622121例 2某人抛掷一枚均匀骰子,构造数列na,使)( , 1)( , 1次掷出奇数当第次掷出偶数当第nnan,记nnaaaS21求)4,3, 2, 1(0 iSi且28S的概率。错解:记事件A:28S,即前 8 项中, 5 项取值 1,另 3 项取值 1 28S的概率858)21()(CAP记事件 B:)4, 3 ,2, 1(0 iSi,将)4, 3, 2, 1(0 iSi分为两种情形:(1)若第 1、2 项取值为 1,则 3,4 项的取值任意(2)若第 1 项为 1
4、,第 2 项为 1,则第 3 项必为 1 第四项任意精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页学习必备欢迎下载P(B)=83)21()21(32所求事件的概率为P=P(A) P( B)=858)21(83C错因分析:0iS且28S是同一事件的两个关联的条件,而不是两个相互独立事件。0iS对28S的概率是有影响的,所以解答应为:正解:)4, 3, 2, 1(0 iSi前 4 项的取值分为两种情形若 1、3 项为 1;则余下6 项中 3 项为 1,另 3 项为 -1 即可。即8361)21(CP;若 1、2 项为正,为避免与第类
5、重复,则第3 项必为 -1,则后 5 项中只须3 项为 1,余下 2 项为 -1,即8352)21(CP,所求事件的概率为783536215)21()(CCP二、有序与无序不分致错例 3甲、乙两人参加普法知识竞赛,共有10 个不同的题目,其中选择题6 个,判断题 4 个,甲、乙依次各抽一题。求: (1)甲抽到选择题,乙提到判断题的概率是多少?(2)甲、乙两人中至少有1 人抽到选择题的概率是多少?错误解法:(1)甲从选择题抽到一题的结果为16C乙从判断题中抽到一题的结果为14C而甲、乙依次抽到一题的结果为210C所求概率为:1582101416CCC错因分析:甲、乙依次从10 个题目各抽一题的结
6、果,应当是先选后排,所以应为210A。为避免错误,对于基本事件总数也可这样做:甲抽取一道题目的结果应为110C种,乙再抽取余下的 9 道题中的任一道的结果应为19C种,所以正确解答:154191101416CCCC(2)错误解法:从对立事件考虑,甲、乙都抽到判断题的结果为24C种,所以都抽到判断题的概率为1511911024CCC,所求事件的概率为15141511精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页学习必备欢迎下载错因分析: 指定事件中指明甲、乙依次各抽一题,那么甲、乙都提到判断题的结果应为1314CC种,所以所求事件
7、概率应为1521191101314CCCC说明:对于第(2)问,我们也可以用这样解答:152121024CC,这里启示我们,当基本事件是有序的,则指定事件是有序的(指定事件包含在基本事件中) ;当基本事件是无序的,则指定事件也必无序。关键在于基本事件认识角度必须准确。例 4已知 8 支球队中有3 支弱队,以抽签方式将这8 支球队分为A、B 两组,每组4支,求: A、B 两组中有一组恰有两支弱队的概率。错解 1:将 8 支球队均分为A、B 两组,共有4448CC种方法: A、B 两组中有一组恰有两支弱队的分法为: 先从 3支弱队取 2支弱队,又从 5支强队取 2支强队,组成这一组共有2325CC
8、种方法,其它球队分在另一组,只有一种分法。所求事件的概率为:7344482225CCCC。错因分析:从基本事件的结果数来看,分组是讲求顺序的,那么指定事件:“A、B 组中有一组有2 支弱队”应分为两种情形。即“A 组有”或“ B 组有”,所以正确解答为:正解:76244482225CCCC或76/2244482225ACCCC说明:这道题也可从对立事件求解:3 支弱队分法同一组共有:1515CC种结果。所求事件概率为76144481515CCCC三、分步与分类不清致错例 5某人有 5 把不同的钥匙,逐把地试开某房门锁,试问他恰在第3 次打开房门的概率?错误解法: 由于此人第一次开房门的概率为5
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学概率中的易错题辨析 2022 年高 数学 概率 中的 易错题 辨析
限制150内