2020届新高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 .doc
《2020届新高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 .doc》由会员分享,可在线阅读,更多相关《2020届新高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 .doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、层级二 专题一 第4讲限时60分钟满分60分解答题(本大题共5小题,每小题12分,共60分)1(2019天津卷节选)设函数f(x)excos x,g(x)为f(x)的导函数(1)求f(x)的单调区间;(2)当x时,证明f(x)g(x)0.解析:(1)由已知,有f(x)ex(cos xsin x)因此,当x(kZ)时,有sin xcos x,得f(x)0,则f(x)单调递减;当x(kZ)时,有sin xcos x,得f(x)0,则f(x)单调递增所以,f(x)的单调递增区间为(kZ),f(x)的单调递减区间为(kZ)(2)证明:记h(x)f(x)g(x),依题意及(1),有g(x)ex(cos
2、xsin x),从而g(x)2exsin x当x时,g(x)0,故h(x)f(x)g(x)g(x)(1)g(x)0.因此,h(x)在区间上单调递减,进而h(x)hf0.所以,当x时,f(x)g(x)0.2(2019大庆三模)设函数f(x)kln x,k0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,)上仅有一个零点解析:(1)由f(x)kln x(k0)得f(x)x.由f(x)0解得x.f(x)与f(x)在区间(0,)上的变化情况如下:x(0,)(,)f(x)0f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,);f(x)在x处取得极
3、小值f().(2)证明:由(1)知,f(x)在区间(0,)上的最小值为f().因为f(x)存在零点,所以0,从而ke.当ke时,f(x)在区间(1,)上单调递减,且f()0,所以x是f(x)在区间(1,上的唯一零点当ke时,f(x)在区间(0,)上单调递减,且f(1)0,f()0,所以f(x)在区间(1,上仅有一个零点综上可知,若f(x)存在零点,则f(x)在区间(1,上仅有一个零点3(2019全国卷)已知函数f(x)2sin xxcos xx,f(x)为f(x)的导数(1)证明:f(x)在区间(0,)存在唯一零点;(2)若x0,时,f(x)ax,求a的取值范围解:(1)设g(x)f(x),则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020届新高考数学二轮课时作业:层级二 专题一 第4讲 导数的综合应用与热点问题 2020 高考 数学 二轮 课时 作业 层级 专题 导数 综合 应用 热点问题
限制150内