2021高三数学北师大版(理)一轮教师用书:第9章 第9节 圆锥曲线中的定点、定值问题 .doc
《2021高三数学北师大版(理)一轮教师用书:第9章 第9节 圆锥曲线中的定点、定值问题 .doc》由会员分享,可在线阅读,更多相关《2021高三数学北师大版(理)一轮教师用书:第9章 第9节 圆锥曲线中的定点、定值问题 .doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第九节圆锥曲线中的定点、定值问题最新考纲会证明与曲线上动点有关的定值问题,会处理动曲线(含直线)过定点的问题考点1定点问题直线过定点1.动直线l过定点问题的基本思路设动直线方程(斜率存在)为ykxt,由题设条件将t用k表示为tmk,得yk(xm),故动直线过定点(m,0)2动直线l过定点问题的解题步骤第一步:设AB直线ykxm,联立曲线方程得根与系数关系,求出参数范围;第二步:由AP与BP关系(如kAPkBP1),得一次函数kf(m)或者mf(k);第三步:将kf(m)或者mf(k)代入ykxm,得yk(xx定)y定(2017全国卷)已知椭圆C:1(ab0),四点P1(1,1),P2(0,1)
2、,P3,P4中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点解(1)由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点又由知,椭圆C不经过点P1,所以点P2在椭圆C上因此解得故椭圆C的方程为y21.(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:xt,由题设知t0,且|t|2,可得A,B的坐标分别为,则k1k21,得t2,不符合题设从而可设l:ykxm(m1)将ykxm代入y21得(4k21)x28kmx4m240.由题设可知16(4k2m21)0.设
3、A(x1,y1),B(x2,y2),则x1x2,x1x2.而k1k2.由题设k1k21,故(2k1)x1x2(m1)(x1x2)0.即(2k1)(m1)0,解得k.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1)本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P做相互垂直的直线交圆锥曲线于AB,则AB必过定点.本题还可以拓展为“手电筒”模型:只要任意一个限定AP与BP条件(如kAPkBP定值,kAPkBP定值),直线AB依然会过定点教师备选例题过抛物线C:y24x的焦点F且斜率为k的直线l交抛物线C于A,B两点,且|AB|8.(1)求l的方程;(2)若A关
4、于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标解(1)易知点F的坐标为(1,0),则直线l的方程为yk(x1),代入抛物线方程y24x得k2x2(2k24)xk20,由题意知k0,且(2k24)24k2k216(k21)0,设A(x1,y1),B(x2,y2),x1x2,x1x21,由抛物线的定义知|AB|x1x228,6,k21,即k1,直线l的方程为y(x1)(2)由抛物线的对称性知,D点的坐标为(x1,y1),直线BD的斜率kBD,直线BD的方程为yy1(xx1),即(y2y1)yy2y1y4x4x1,y4x1,y4x2,x1x21,(y1y2)216x1x216,即y1y2
5、4(y1,y2异号),直线BD的方程为4(x1)(y1y2)y0,恒过点(1,0)1.已知抛物线C的顶点在原点,焦点在坐标轴上,点A(1,2)为抛物线C上一点(1)求抛物线C的方程;(2)若点B(1,2)在抛物线C上,过点B作抛物线C的两条弦BP与BQ,如kBPkBQ2,求证:直线PQ过定点解(1)若抛物线的焦点在x轴上,设抛物线方程为y2ax,代入点A(1,2),可得a4,所以抛物线方程为y24x.若抛物线的焦点在y轴上,设抛物线方程为x2my,代入点A(1,2),可得m,所以抛物线方程为x2y.综上所述,抛物线C的方程是y24x或x2y.(2)证明:因为点B(1,2)在抛物线C上,所以由(
6、1)可得抛物线C的方程是y24x.易知直线BP,BQ的斜率均存在,设直线BP的方程为y2k(x1),将直线BP的方程代入y24x,消去y,得k2x2(2k24k4)x(k2)20.设P(x1,y1),则x1,所以P.用替换点P坐标中的k,可得Q(k1)2,22k),从而直线PQ的斜率为,故直线PQ的方程是y22kx(k1)2在上述方程中,令x3,解得y2,所以直线PQ恒过定点(3,2)2已知圆x2y24经过椭圆C:1(ab0)的两个焦点和两个顶点,点A(0,4),M,N是椭圆C上的两点,它们在y轴两侧,且MAN的平分线在y轴上,|AM|AN|.(1)求椭圆C的方程;(2)证明:直线MN过定点解
7、(1)圆x2y24与x轴交于点(2,0),即为椭圆的焦点,圆x2y24与y轴交于点(0,2),即为椭圆的上下两顶点,所以c2,b2.从而a2,因此椭圆C的方程为1.(2)证明:设直线MN的方程为ykxm.由消去y得(2k21)x24kmx2m280.设M(x1,y1),N(x2,y2),则x1x2,x1x2.直线AM的斜率k1k;直线AN的斜率k2k.k1k22k2k.由MAN的平分线在y轴上,得k1k20.又因为|AM|AN|,所以k0,所以m1.因此,直线MN过定点(0,1)动圆过定点动圆过定点问题求解时可以先取特殊值或者极值,找出这个定点,再用向量法证明用直径所对圆周角为直角(2019北
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高三数学北师大版理一轮教师用书:第9章 第9节 圆锥曲线中的定点、定值问题 2021 数学 北师大 一轮 教师 圆锥曲线 中的 定点 问题
限制150内