2022年苏科版八年级上知识点总结 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年苏科版八年级上知识点总结 .pdf》由会员分享,可在线阅读,更多相关《2022年苏科版八年级上知识点总结 .pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、知识点大全第一章轴对称图形第二章勾股定理与平方根一、勾股定理 1. 勾股定理直角三角形两直角边a,b 的平方和等于斜边c 的平方,即222cba2. 勾股定理的逆定理如果三角形的三边长a,b,c 有关系222cba,那么这个三角形是直角三角形。3. 勾股数满足222cba的三个正整数,称为勾股数。二、实数的概念及分类1. 实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数 2. 无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:( 1)开方开不尽的数,如32,7等;( 2)有特定意义的数,如圆周率,或化
2、简后含有的数,如3+8 等;( 3)有特定结构的数,如0.1010010001 等;( 4)某些三角函数值,如sin60o等。三、平方根、算数平方根和立方根 1.算术平方根:一般地,如果一个正数x 的平方等于a,即 x2=a,那么这个正数x 就叫做 a 的算术平方根。特别地,0 的算术平方根是0。表示方法:记作“a” ,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。 2.平方根:一般地,如果一个数x 的平方等于a,即 x2=a,那么这个数x 就叫做 a 的平方根(或二次方根)。表示方法:正数a 的平方根记做“a” ,读作“正、负根号a” 。性质:一个正数有两个平方根,它
3、们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a 的平方根的运算,叫做开平方。0a注意a的双重非负性:a0 3.立方根一般地,如果一个数x 的立方等于a,即 x3=a那么这个数x 就叫做 a 的立方根(或三次方根)。表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:33aa,这说明三次根号内的负号可以移到根号外面。轴对称轴对称的性质轴对称图形线段角等腰三角形D 轴对称的应用等腰梯形设计轴对称图案精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页知识点大全四、实数大小的比
4、较 1.实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。 2.实数大小比较的几种常用方法( 1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。( 2)求差比较:设a、b 是实数:,0baba,0babababa0( 3)求商比较法:设a、b 是两正实数,;1;1;1babababababa( 4)绝对值比较法:设a、b 是两负实数,则baba。( 5)平方法:设a、b 是两负实数,则baba22。五、实数的运算 1. 六种运算:加、减、乘、除、乘方、开方。 2.实数的运算顺序先算乘方和开方,再算乘除,最
5、后算加减,如果有括号,就先算括号里面的。 3.运算律加法交换律abba加法结合律)()(cbacba乘法交换律baab乘法结合律)()(bcacab乘法对加法的分配律acabcba)(第三章中心对称图形(一)一、平移 1.定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。 2.性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。二、旋转 1.定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。 2.性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点
6、与旋转中心的连线所成的角等于旋转角。三、四边形的相关概念 1.四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。 2.四边形具有不稳定性 3.四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360四边形的外角和定理:四边形的外角和等于360推论:多边形的内角和定理:n 边形的内角和等于)2(n180多边形的外角和定理:任意多边形的外角和等于360 4.设多边形的边数为n,则多边形的对角线共有2)3(nn条。从 n 边形的一个顶点出发能引(n-3 )条对角线,将n 边形分成( n-2 )个三角形。四、平行四边形 1.平行四边形的定义两组对边分别平
7、行的四边形叫做平行四边形。 2.平行四边形的性质( 1)平行四边形的对边平行且相等。( 2)平行四边形相邻的角互补,对角相等。( 3)平行四边形的对角线互相平分。( 4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:( 1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。( 2)推论:夹在两条平行线间的平行线段相等。 3.平行四边形的判定( 1)定义:两组对边分别平行的四边形是平行四边形。( 2)定理 1:两组对角分别相等的四边形是平行四边形。( 3)定理 2:两组对边分别相等的四边形是平行四边形。( 4
8、)定理 3:对角线互相平分的四边形是平行四边形。( 5)定理 4:一组对边平行且相等的四边形是平行四边形。 4.两条平行线的距离精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页知识点大全两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。 5.平行四边形的面积S平行四边形=底边长高 =ah 五、矩形 1.矩形的定义有一个角是直角的平行四边形叫做矩形。 2.矩形的性质( 1)矩形的对边平行且相等。( 2)矩形的四个角都是直角。( 3)矩形的对角线相等且互相平分。( 4)矩形既是中心对
9、称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。 3.矩形的判定( 1)定义:有一个角是直角的平行四边形是矩形。( 2)定理 1:有三个角是直角的四边形是矩形。( 3)定理 2:对角线相等的平行四边形是矩形。 4.矩形的面积S矩形=长宽 =ab 六、菱形 1.菱形的定义有一组邻边相等的平行四边形叫做菱形。 2.菱形的性质( 1)菱形的四条边相等,对边平行。( 2)菱形的相邻的角互补,对角相等。( 3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。( 4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点
10、(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。 3.菱形的判定( 1)定义:有一组邻边相等的平行四边形是菱形。( 2)定理 1:四边都相等的四边形是菱形。( 3)定理 2:对角线互相垂直的平行四边形是菱形。 4.菱形的面积S菱形=底边长高 =两条对角线乘积的一半七、正方形 1.正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。 2.正方形的性质( 1)正方形四条边都相等,对边平行。( 2)正方形的四个角都是直角。( 3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。( 4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交
11、点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。 3.正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。 4.正方形的面积设正方形边长为a,对角线长为bS正方形=222ba八、 梯形(一) 1 、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。 2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。(二)直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年苏科版八年级上知识点总结 2022 年苏科版八 年级 知识点 总结
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内