《2022年高一数学集合的基本运算知识点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学集合的基本运算知识点.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高一数学集合的基本运算知识点 当一个小小的心念变成成为行为时,便能成了习惯;从而形成性格,而性格就确定你一生的成败。胜利与不胜利之间有时距离很短只要后者再向前几步。我高一频道为莘莘学子整理了高一年级数学集合学问点总结,希望对你有所帮助! 高一数学集合的基本运算学问点 一.学问归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 留意:集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则ab)和无序性
2、(a,b与b,a表示同一个集合)。 集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对xA都有xB,则AB(或AB); 2)真子集:AB且存在x0B但x0A;记为AB(或,且) 3)交集:AB=A且xB 4)并集:AB=A或xB 5)补集:CUA=A但xU 留意:?A,若A?,则?A; 若,则; 若且,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,驾驭有关的术语
3、和符号,特殊要留意以下的符号:(1)与、?的区分;(2)与的区分;(3)与的区分。 4.有关子集的几个等价关系 AB=AAB;AB=BAB;ABCuACuB; ACuB=空集CuAB;CuAB=IAB。 5.交、并集运算的性质 AA=A,A?=?,AB=BA;AA=A,A?=A,AB=BA; Cu(AB)=CuACuB,Cu(AB)=CuACuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二.例题讲解: 【例1】已知集合M=m+,mZ,N=,nZ,P=,pZ,则M,N,P满意关系 A)M=NPB)MN=PC)MNPD)NPM 分
4、析一:从推断元素的共性与区分入手。 解答一:对于集合M:=,mZ;对于集合N:=,nZ 对于集合P:=,pZ,由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。 分析二:简洁列举集合中的元素。 解答二:M=,N=,,,P=,,,这时不要急于推断三个集合间的关系,应分析各集合中不同的元素。 =N,N,MN,又=M,MN, =P,NP又N,PN,故P=N,所以选B。 点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。 变式:设集合,则(B) A.M=NB.MNC.NMD. 解: 当时,2k+1是奇数
5、,k+2是整数,选B 【例2】定义集合AB=A且xB,若A=1,3,5,7,B=2,3,5,则AB的子集个数为 A)1B)2C)3D)4 分析:确定集合AB子集的个数,首先要确定元素的个数,然后再利用公式:集合A=a1,a2,an有子集2n个来求解。 解答:AB=A且xB,AB=1,7,有两个元素,故AB的子集共有22个。选D。 变式1:已知非空集合M1,2,3,4,5,且若aM,则6?aM,那么集合M的个数为 A)5个B)6个C)7个D)8个 变式2:已知a,bAa,b,c,d,e,求集合A. 解:由已知,集合中必需含有元素a,b. 集合A可能是a,b,a,b,c,a,b,d,a,b,e,a
6、,b,c,d,a,b,c,e,a,b,d,e. 评析本题集合A的个数实为集合c,d,e的真子集的个数,所以共有个. 【例3】已知集合A=2+px+q=0,B=2?4x+r=0,且AB=1,AB=?2,1,3,求实数p,q,r的值。 解答:AB=11B12?41+r=0,r=3. B=2?4x+r=0=1,3,AB=?2,1,3,?2B,?2A AB=11A方程x2+px+q=0的两根为-2和1, 变式:已知集合A=2+bx+c=0,B=2+mx+6=0,且AB=2,AB=B,求实数b,c,m的值. 解:AB=21B22+m?2+6=0,m=-5 B=2-5x+6=0=2,3AB=B 又AB=2
7、A=2b=-(2+2)=4,c=22=4 b=-4,c=4,m=-5 【例4】已知集合A=x(x-1)(x+1)(x+2)0,集合B满意:AB=-2,且AB=x1 分析:先化简集合A,然后由AB和AB分别确定数轴上哪些元素属于B,哪些元素不属于B。 解答:A=x-2-1或x1。由AB=x1-2可知-1,1B,而(-,-2)B=。-1或x -1或x 综合以上各式有B=x-1x5 变式1:若A=3+2x2-8x0,B=2+ax+b0,已知AB=-4,AB=,求a,b。(答案:a=-2,b=0) 点评:在解有关不等式解集一类集合问题,应留意用数形结合的方法,作出数轴来解之。 变式2:设M=2-2x-
8、3=0,N=xax-1=0,若MN=N,求全部满意条件的a的集合。 解答:M=-1,3,MN=N,NM 当时,ax-1=0无解,a=0 综得:所求集合为-1,0, 【例5】已知集合,函数y=log2(ax2-2x+2)的定义域为Q,若PQ,求实数a的取值范围。 分析:先将原问题转化为不等式ax2-2x+20在有解,再利用参数分别求解。 解答:(1)若,在内有有解 令当时, 所以a-4,所以a的取值范围是 变式:若关于x的方程有实根,求实数a的取值范围。 解答: 点评:解决含参数问题的题目,一般要进行分类探讨,但并不是全部的问题都要探讨,怎样可以避开探讨是我们思索此类问题的关键。 三.随堂演练
9、选择题 1.下列八个关系式0=00 00其中正确的个数 (A)4(B)5(C)6(D)7 2.集合1,2,3的真子集共有 (A)5个(B)6个(C)7个(D)8个 3.集合A=xB=C=又则有 (A)(a+b)A(B)(a+b)B(C)(a+b)C(D)(a+b)A、B、C任一个 4.设A、B是全集U的两个子集,且AB,则下列式子成立的是 (A)CUACUB(B)CUACUB=U (C)ACUB=(D)CUAB= 5.已知集合A=,B=则A= (A)R(B) (C)(D) 6.下列语句:(1)0与0表示同一个集合;(2)由1,2,3组成的集合可表示为 1,2,3或3,2,1;(3)方程(x-1
10、)2(x-2)2=0的全部解的集合可表示为1,1,2;(4)集合是有限集,正确的是 (A)只有(1)和(4)(B)只有(2)和(3) (C)只有(2)(D)以上语句都不对 7.设S、T是两个非空集合,且ST,TS,令X=S那么SX= (A)X(B)T(C)(D)S 8设一元二次方程ax2+bx+c=0(a0)的根的判别式,则不等式ax2+bx+c0的解集为 (A)R(B)(C)(D) 填空题 9.在直角坐标系中,坐标轴上的点的集合可表示为 10.若A=1,4,x,B=1,x2且AB=B,则x= 11.若A=xB=x,全集U=R,则A= 12.若方程8x2+(k+1)x+k-7=0有两个负根,则
11、k的取值范围是 13设集合A=,B=x,且AB,则实数k的取值范围是。 14.设全集U=x为小于20的非负奇数,若A(CUB)=3,7,15,(CUA)B=13,17,19,又(CUA)(CUB)=,则AB= 解答题 15(8分)已知集合A=a2,a+1,-3,B=a-3,2a-1,a2+1,若AB=-3,求实数a。 16(12分)设A=,B=, 其中xR,假如AB=B,求实数a的取值范围。 四.习题答案 选择题 12345678 CCBCBCDD 填空题 9.(x,y)10.0,11.x,或x312.13.14.1,5,9,11 解答题 15.a=-1 16.提示:A=0,-4,又AB=B,
12、所以BA ()B=时,4(a+1)2-4(a2-1)0,得a-1 ()B=0或B=-4时,0得a=-1 ()B=0,-4,解得a=1 综上所述实数a=1或a-1 高一数学集合的基本运算学问点 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急。2、数学名词。一组具有某种共同性质的数学元素:有理数的。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,特地探讨集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透
13、到现代数学的全部领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。 元素与集合的关系 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本
14、身的子集。子集,真子集都具有传递性。说明一下:假如集合A的全部元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个符号(如右图),不要混淆,考试时还是要以课本为准。全部男人的集合是全部人的集合的真子集。 集合的几种运算法则 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作AB(或BA),读作“A并B”(或“B并A”),即AB=x|xA,或xB交集:以属于A且属于B的元差集表示 素为元素的集合称为A与B的交(集),记作AB(或BA),读作“A交B”(或“B交A”),即AB=
15、x|xA,且xB例如,全集U=1,2,3,4,5A=1,3,5B=1,2,5。那么因为A和B中都有1,5,所以AB=1,5。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说AB=1,2,3,5。图中的阴影部分就是AB。好玩的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合 1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)(B-A)例如:A=a,b,c,B=b,d,则A?B=a,c,d对称差运算的另一种定义是:A?B=(AB)-(AB)无限集:定义:集合里含有无限个元素的集合
16、叫做无限集有限集:令N是正整数的全体,且N_n=1,2,3,n,假如存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB=xxA,x不属于B。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA=x|xU,且x不属于A空集也被认为是有限集合。例如,全集U=1,2,3,4,5而A=1,2,5那么全集有而A中没有的3,4就是CuA,是A的补集。CuA=3,4。在信息技术当中,经常把CuA写成A。 集合元素的
17、性质 1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这特性质主要用于推断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必需为自然数。3.互异性:集合中随意两个元素都是不同的对象。如写成1,1,2,等同于1,2。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:a,b,cc,b,a是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A=x|x2,集合A中全部的元素都要符合x2,这就是集合纯粹性。6.完备性:仍用上面的例子,全部符
18、合x2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。 集合有以下性质 若A包含于B,则AB=A,AB=B 集合的表示方法 集合常用大写拉丁字母来表示,如:A,B,C而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A=的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。 常用的有列举法和描述法。1.列举法常用于表示有限集合,把集合中的全部元素一一列举出来写在大括号内这种表示集合的方法叫做列举法。1,2,3,2.描述法常用于表示无
19、限集合,把集合中元素的公共属性用文字符号或式子等描述出来写在大括号内这种表示集合的方法叫做描述法。x|P(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:x|0 4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N(2)非负整数集内解除0的集,也称正整数集,记作Z+;负整数集内也解除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。Q=p/q|pZ,qN,且p,q互质(正负有理数集合分别记作Q+Q-)(5)全体实数
20、的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律AB=BAAB=BA集合结合律(AB)C=A(BC)(AB)C=A(BC)集合安排律A(BC)=(AB)(AC)A(BC)=(AB)(AC)集合德.摩根律集合 Cu(AB)=CuACuBCu(AB)=CuACuB集合“容斥原理”在探讨集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。例如A=a,b,c,则card(A)=3card(AB)=card(A)+card(B)-card(AB)card(ABC)=card(A)+card(B)+card(C)
21、-card(AB)-card(BC)-card(CA)+card(ABC)1885年德国数学家,集合论创始人康托尔谈到集合一词,列举法和描述法是表示集合的常用方式。集合汲取律A(AB)=AA(AB)=A集合求补律ACuA=UACuA=设A为集合,把A的全部子集构成的集合叫做A的幂集德摩根律A-(BUC)=(A-B)(A-C)A-(BC)=(A-B)U(A-C)(BUC)=BC(BC)=BUC=EE=特别集合的表示复数集C实数集R正实数集R+负实数集R-整数集Z正整数集Z+负整数集Z-有理数集Q正有理数集Q+负有理数集Q-不含0的有理数集Q 高一数学集合的基本运算学问点 并集:以属于A或属于B的
22、元素为元素的集合称为A与B的并(集),记作AB(或BA),读作“A并B”(或“B并A”),即AB=x|xA,或xB交集:以属于A且属于B的元差集表示 素为元素的集合称为A与B的交(集),记作AB(或BA),读作“A交B”(或“B交A”),即AB=x|xA,且xB例如,全集U=1,2,3,4,5A=1,3,5B=1,2,5。那么因为A和B中都有1,5,所以AB=1,5。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说AB=1,2,3,5。图中的阴影部分就是AB。好玩的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合 1
23、再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)(B-A)例如:A=a,b,c,B=b,d,则A?B=a,c,d对称差运算的另一种定义是:A?B=(AB)-(AB)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N是正整数的全体,且N_n=1,2,3,n,假如存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB=xxA,x不属于B。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为
24、集合A的补集,记作CuA,即CuA=x|xU,且x不属于A空集也被认为是有限集合。例如,全集U=1,2,3,4,5而A=1,2,5那么全集有而A中没有的3,4就是CuA,是A的补集。CuA=3,4。在信息技术当中,经常把CuA写成A。 至于学习方法的讲究,每位同学可依据自己的基础、学习习惯、智力特点选择适合自己的学习方法,这里主要依据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学的区分是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并驾驭各种等价的表达
25、方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-l)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区分,两者很简单混淆。 2、学习立体几何要有较好的空间想象实力,而培育空间想象实力的方法有二:一是勤画图;二是自制模型帮助想象,如利用四直角三棱锥的模型比照习题多看,多想。但最终要达到不依靠模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的方法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起探讨,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。 高一数学集合的基本运算学问点第16页 共16页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页
限制150内