2022年高一数学必修一函数知识点总结归纳.docx
《2022年高一数学必修一函数知识点总结归纳.docx》由会员分享,可在线阅读,更多相关《2022年高一数学必修一函数知识点总结归纳.docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高一数学必修一函数知识点总结归纳 考试是检测学生学习效果的重要手段和方法,考前须要做好各方面的学问储备,对于数学更加要进行复习归纳。下面就让学习啦我给大家共享一些高一数学必修一函数学问点总结吧,希望能对你有帮助! 更多高一学习方法学问,欢迎大家点击(↓↓↓↓↓) ✔✔✔高中语文学问归纳✔✔✔高中化学基础学问归纳✔✔✔高一历史必修一学问点总结✔✔✔高一政治下册公民的政治生
2、活复习要点高一数学必修一函数学问点总结篇一 1. 函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x) ; (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0); (4)若所给函数的解析式较为困难,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 2. 复合函数的有关问题 (1)复合函数定义域求法:若已知 的定义域为a,b,其复合函数fg(x)的定义域由不等式a≤g(x)≤b解
3、出即可;若已知fg(x)的定义域为a,b,求 f(x)的定义域,相当于x∈a,b时,求g(x)的值域(即 f(x)的定义域);探讨函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由同增异减判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上随意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上随意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
4、(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数; (3)若y=f(x)奇函数,其图像又关
5、于直线x=a对称,则f(x)是周期为4a的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数; 5.方程k=f(x)有解 k∈D(D为f(x)的值域); 6.a≥f(x) 恒成立 a≥f(x)max,; a≤f(x) 恒成立 a≤f(x)min; 7.(1) (a0,a≠1
6、,b0,n∈R+); (2) l og a N= ( a0,a≠1,b0,b≠1); (3) l og a b的符号由口诀同正异负记忆; (4) a log a N= N ( a0,a≠1,N0 ); 8. 推断对应是否为映射时,抓住两点:(1)A中元素必需都有象且唯一;(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象; 9. 能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。 10.对于反函数,应驾驭以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期
7、函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(x∈B),f-1f(x)=x(x∈A). 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用两看法:一看开口方向;二看对称轴与所给区间的相对位置关系; 12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题 13. 恒成立问题的处理方法:(1)分别参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解; 高一数学必修一函数学问点总结篇二 一:集合的含义与
8、表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能推断一个给定的东西是否属于这个整体。 把探讨对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不行重复的。 (3)元素的无序性:集合中元素的位置是可以变更的,并且变更位置不影响集合 3、集合的表示: (1)用大写字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 必修 函数 知识点 总结 归纳
限制150内