2022年高中数学抛物线教案.docx
《2022年高中数学抛物线教案.docx》由会员分享,可在线阅读,更多相关《2022年高中数学抛物线教案.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年高中数学抛物线教案 在一年的数学教化任务中,作为中学数学老师的你了解如何写中学数学抛物线教案吗?来写一篇中学数学抛物线教案吧,它会对你的数学教学工作起到不菲的帮助。下面是我为大家收集有关于中学数学抛物线教案,希望你喜爱。 #278106中学数学抛物线教案1 一、教材分析 1.教材所处的地位和作用 在学习了随机事务、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型学问的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。 2.教学的重点和难点 重点:正确理解随机数的
2、概念,并能应用计算器或计算机产生随机数。 难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简洁的现实问题。 二、教学目标分析 1、学问与技能: (1)了解随机数的概念; (2)利用计算机产生随机数,并能干脆统计出频数与频率。 2、过程与方法: (1)通过对现实生活中详细的概率问题的探究,感知应用数学解决问题的方法,体会数学学问与现实世界的联系,培育逻辑推理实力; (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯 3、情感看法与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 三、教学方法与手段分析 1、教
3、学方法:本节课我主要采纳启发探究式的教学模式。 2、教学手段:利用多媒体技术优化课堂教学 四、教学过程分析 创设情境、引入新课 情境1:假设你作为一名食品卫生工作人员,要对某超市内的80袋小包装饼干中抽取10袋进行卫生达标检验,你准备如何操作? 预设学生回答: 采纳简洁随机抽样方法(抽签法) 采纳简洁随机抽样方法(随机数表法) 老师总结得出:随机数就是在肯定范围内随机产生的数,并且得到这个范围内每一数的机会一样。(引入课题) 设计意图(1)回忆统计学问中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征;(2)从详细试验中了解随机数的含义。 情境2:在抛硬币和掷骰子的试验中,是用频率估
4、计概率。假如现在要作10000次试验,你准备怎么办?大家可能觉得这样做试验花费时间太多了,有没有其他方法可以代替试验呢? 设计意图当须要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,体现利用计算器或计算机产生随机数的必要性。 操作实践、了解新知 老师:向学生介绍计算器的操作,让他们了解随机函数的原理。可事先编制几个小问题,在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍,让学生熟识如何用计算器产生随机数。 设计意图通过操作熟识计算器操作流程,在明白原理后,通过让学生自己根据规则操作,熟识计算器产生随机数的操作流程,了解随机数。 问题1:抛一枚质地匀
5、称的硬币出现正面对上的概率是50,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗? 思索:随着模拟次数的不同,结果是否有区分,为什么? 设计意图设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步。抛硬币是最熟识、最简洁的问题,很自然会想到把正面对上、反面对上这两个基本领件用两个随机数来代替。(题目让学生通过熟识50想到用随机数0,1来模拟,为后面问题4每天下雨的概率为40的概率建模作第一次小铺垫。)熟识利用计算器模拟试验的操作流程,为解决后面例题模拟下雨作好铺垫。 问题2:(1)刚才我们利用了计算器来产生随机数,我们知道计算机有很多软件有统计功能,你知道哪些
6、软件具有随机函数这个功能? (2)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗? 设计意图了解有很多统计软件都有随机函数这个功能,并与前面第一章所学的用程序语言编写程序相联系;Excel是学生比较熟识的统计软件,也可让学生回顾初中用Excel画统计图的一些功能和学问,其次让学生驾驭多种随机模拟试验方法。 问题3:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗? (2)当试验次数为1000,1500时,你能说说出现正面对上的频率有些什么改变? 设计意图应用随机模拟方法估计古典概型中随机事务的概率值; 体会频率的随机性与相对稳定性
7、,经验用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生信任统计结果的真实性、随机性及规律性。 讲练结合、巩固新知 问题4:天气预报说,在今后的三天中,每一天下雨的概率均为40,这三天中恰有两天下雨的概率是多少? 问1:能用古典概型的计算公式求解吗? 你能说明一下这为什么不是古典概型吗? 问2:你如何模拟每一天下雨的概率为40? 设计意图问题分层提出,降低本题难度。如何模拟每一天下雨的概率40是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一。 巩固用随机模拟方法估计未知量的基本思想,明确利用随机模拟方法也可解决不是古典概型而比较困难的概率应用题。 归纳步骤:第一步,设计概
8、率模型; 其次步,进行模拟试验; 方法一:(随机模拟方法-计算器模拟)利用计算器随机函数; 方法二:(随机模拟方法-计算机模拟) 第三步,统计试验的结果。 课堂检测将一枚质地匀称的硬币连掷三次,出现2个正面朝上、1个反面朝上和1个正面朝上、2个反面朝上的概率各是多少?并用随机模拟的方法做100次试验,计算各自的频数。 设计意图通过练习,进一步巩固学生对本节课学问的驾驭。 归纳小结 (1)你能归纳利用随机模拟方法估计概率的步骤吗? (2)你能体会到随机模拟的优势吗?请举例说说。 设计意图通过问题的思索和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势;是对学问的进一步理解与思索,又是对本
9、节内容的回顾与总结。 布置练习: 课本练习3、4 设计意图课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和驾驭所学内容。 内容结束 #278069中学数学抛物线教案2 教学目标 (1)使学生正确理解组合的意义,正确区分排列、组合问题; (2)使学生驾驭组合数的计算公式; (3)通过学习组合学问,让学生驾驭类比的学习方法,并提高学生分析问题和解决问题的实力; 教学重点难点 重点是组合的定义、组合数及组合数的公式; 难点是解组合的应用题. 教学过程设计 (-)导入新课 (老师活动)提出下列思索问题,打出字幕. 字幕一条铁路途上有6个火车站,(1)需打算多少种不同的一
10、般客车票?(2)有多少种不同票价的一般客车票?上面问题中,哪一问是排列问题?哪一问是组合问题? (学生活动)探讨并回答. 答案提示:(1)排列;(2)组合. 评述问题(1)是从6个火车站中任选两个,并按肯定的依次排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无依次关系,要求出不同的组数,属于组合问题.这节课着重探讨组合问题. 设计意图:组合与排列所探讨的问题几乎是平行的.上面设计的问题目的是从排列学问中发觉并提出新的问题. (二)新课讲授 提出问题 创设情境 (老师活动)指导学生带着问题阅读课文. 字幕1.排列的定义是什么? 2.举例说明一个组合是什么? 3
11、.一个组合与一个排列有何区分? (学生活动)阅读回答. (老师活动)比照课文,逐一评析. 设计意图:激活学生的思维,使其将所学的学问迁移过渡,并尽快适应新的环境. 【归纳概括 建立新知】 (老师活动)承接上述问题的回答,展示下面学问. 字幕模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思索题:6个火车站中甲站乙站和乙站甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合. 组合数:从 个不同元素中取出 个元素的全部组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 . 评述区分一个排列与一个组合的关键是:该问题是否与依次有
12、关,当取出元素后,若变更一下依次,就得到一种新的取法,则是排列问题;若变更依次,仍得原来的取法,就是组合问题. (学生活动)倾听、思索、记录. (老师活动)提出思索问题. 投影 与 的关系如何? (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步: 第1步,先求出从这 个不同元素中取出 个元素的组合数为 ; 第2步,求每一个组合中 个元素的全排列数为 .依据分步计数原理,得到 字幕公式1: 公式2: (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的一般客车票. 设计意图:本着以相识概念为起点,以问题为主线,以培育实力为核心的宗旨,逐步展示学问的形成过程
13、,使学生思维层层被激活、渐渐深化到问题当中去. 【例题示范 探求方法】 (老师活动)打出字幕,给出示范,指导训练. 字幕例1 列举从4个元素 中任取2个元素的全部组合. 例2 计算:(1) ;(2) . (学生活动)板演、示范. (老师活动)讲评并指出用两种方法计算例2的第2小题. 字幕例3 已知 ,求 的全部值. (学生活动)思索分析. 解 首先,依据组合的定义,有 其次,由原不等式转化为 即 解得 综合、,得 ,即 点评这是组合数公式的应用,关键是公式的选择. 设计意图:例题教学按部就班,让学生巩固学问,强化公式的应用,从而培育学生的综合分析实力. 【反馈练习 学会应用】 (老师活动)给出
14、练习,学生解答,老师点评. 课堂练习课本P99练习第2,5,6题. 补充练习 字幕1.计算: 2.已知 ,求 . (学生活动)板演、解答. 设计意图:课堂教学体现以学生为本,让全体学生参加训练,深刻揭示排列数公式的结构、特征及应用. (三)小结 (师生活动)共同小结. 本节主要内容有 1.组合概念. 2.组合数计算的两个公式. (四)布置作业 1.课本作业:习题10 3第1(1)、(4),3题. 2.思索题:某学习小组有8个同学,从男生中选2人,女生中选1人参与数学、物理、化学三种学科竞赛,要求每科均有1人参与,共有180种不同的选法,那么该小组中,男、女同学各有多少人? 3.探讨性题: 在
15、的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形? (五)课后点评 在学习了排列学问的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培育学生分析问题、解决问题的实力. #278070中学数学抛物线教案3 教学目标 (1)正确理解排列的意义。能利用树形图写出简洁问题的全部排列; (2)了解排列和排列数的意义,能依据详细的问题,写出符合要求的排列; (3)驾驭排列数公式,并能依据详细的问题,写出符合要求的排列数; (4)会分析与数字有关的排列问题,培育学生的抽象实力和逻辑思维实力; (5)通过对排列应用问题的学习,
16、让学生通过对详细事例的视察、归纳中找出规律,得出结论,以培育学生严谨的学习看法。 教学建议 一、学问结构 二、重点难点分析 本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的驾驭和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中. 从n个不同元素中任取m(mn)个元素,根据肯定的依次排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列依次也完全相同.排列数是指从n个不同元素中任取m(mn)个元
17、素的全部不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数. 公式推导要留意紧扣乘法原理,借助框图的直视说明来讲解.要重点分析好 的推导. 排列的应用题是本节教材的难点,通过本节例题的分析,应留意培育学生解决应用问题的实力. 在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样说明比较直观,教学上要充分利用,要求学生作题时也应尽量采纳. 在教学排列应用题时,起先应要求学生写
18、解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培育学生的分析问题的实力,在基本驾驭之后,可以渐渐地不作这方面的要求. 三、教法建议 在讲解排列数的概念时,要留意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,根据肯定的依次摆成一排”,它不是一个数,而是详细的一件事;排列数是指“从n个不同元素中取出m个元素的全部排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,根据肯定的依次排成一排,有如下几种: ab,ac,ba,bc,ca,cb, 其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数. 排列的定义中包
19、含两个基本内容,一是“取出元素”,二是“按肯定依次排列”. 从定义知,只有当元素完全相同,并且元素排列的依次也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而依次不同的排列,都不是同一排列。叫不同排列. 在定义中“肯定依次”就是说与位置有关,在实际问题中,要由详细问题的性质和条件来确定,这一点要特殊留意,这也是与后面学习的组合的根本区分. 在排列的定义中 ,假如 有的书上叫选排列,假如 ,此时叫全排列. 要特殊留意,不加特别说明,本章不探讨重复排列问题. 关于排列数公式的推导的教学.公式推导要留意紧扣乘法原理,借助框图的直视说明来讲解.课本上用的是不完全归纳法,先推导
20、, ,再推广到 ,这样由特别到一般,由详细到抽象的讲法,学生是不难理解的. 导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较困难的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最终一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最终一个因数是什么?一共有多少个连续的自然数相乘. 公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般状况下,要计算详细的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进
21、行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,犹如 时 一样,是一种规定,因此,不能按阶乘数的原意作说明. 建议应充分利用树形图对问题进行分析,这样比较直观,便于理解. 学生在起先做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题娴熟程度的提高,可以逐步降低这种要求. #278077中学数学抛物线教案4 教学分析 本节课的探讨是对初中不等式学习的持续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年高 数学 抛物线 教案
限制150内