2018年度高考天津理科数学带规范标准答案.doc

收藏

编号:2557164    类型:共享资源    大小:1.63MB    格式:DOC    上传时间:2020-04-20
8
金币
关 键 词:
年度 高考 天津 理科 数学 规范 标准答案
资源描述:
*- 2018年普通高等学校招生全国统一考试(天津卷) 理科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 第I卷 注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。 2.本卷共8小题,每小题5分,共40分。 参考公式: 如果事件A,B互斥,那么 . 如果事件A,B相互独立,那么 . 棱柱的体积公式,其中表示棱柱的底面面积,表示棱柱的高. 棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R,集合,,则 (A) (B) (C) (D) (2)设变量x,y满足约束条件 则目标函数的最大值为 (A) 6 (B) 19 (C) 21 (D) 45 (3)阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为 (A) 1 (B) 2 (C) 3 (D) 4 (4)设,则“”是“”的 (A)充分而不必要条件 (B)必要而不重复条件 (C)充要条件 (D)既不充分也不必要条件 (5)已知,,,则a,b,c的大小关系为 (A) (B) (C) (D) (6)将函数的图象向右平移个单位长度,所得图象对应的函数 (A)在区间上单调递增 (B)在区间上单调递减 (C)在区间上单调递增 (D)在区间上单调递减 (7)已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为 (A) (B) (C) (D) (8)如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为 (A) (B) (C) (D) 2018年普通高等学校招生全国统一考试(天津卷) 数 学(理工类) 第Ⅱ卷 注意事项: 1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。 2. 本卷共12小题,共110分。 二. 填空题:本大题共6小题,每小题5分,共30分。 (9) i是虚数单位,复数 . (10) 在的展开式中,的系数为 . (11) 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为 . (12)已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为 . (13)已知,且,则的最小值为 . (14)已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是 . 三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分) 在中,内角A,B,C所对的边分别为a,b,c.已知. (I)求角B的大小; (II)设a=2,c=3,求b和的值. (16)(本小题满分13分) 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I)应从甲、乙、丙三个部门的员工中分别抽取多少人? (II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. (i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望; (ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率. (17)(本小题满分13分) 如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2. (I)若M为CF的中点,N为EG的中点,求证:; (II)求二面角的正弦值; (III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60,求线段DP的长. (18)(本小题满分13分) 设是等比数列,公比大于0,其前n项和为,是等差数列. 已知,,,. (I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. (19)(本小题满分14分) 设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且. (I)求椭圆的方程; (II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值. (20)(本小题满分14分) 已知函数,,其中a>1. (I)求函数的单调区间; (II)若曲线在点处的切线与曲线在点 处的切线平行,证明; (III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线. 参考答案: 一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分. (1)B (2)C (3)B (4)A (5)D (6)A (7)C (8)A 二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分. (9)4–i (10) (11) (12) (13) (14) 三、解答题 (15)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分. (Ⅰ)解:在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=. (Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=. 由,可得.因为a=,于是sin=. 所以,二面角E–BC–F的正弦值为. (Ⅲ)解:设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得. 易知,=(0,2,0)为平面ADGE的一个法向量,故 , 由题意,可得=sin60=,解得h=∈[0,2]. 所以线段的长为. (18)本小题主要考查等差数列的通项公式,等比数列的通项公式及前n项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.满分13分. (I)解:设等比数列的公比为q.由可得. 因为,可得,故. 设等差数列的公差为d,由,可得由, 可得 从而 故 所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)证明:因为 , 所以,. (19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分. (Ⅰ)解:设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2. 所以,椭圆的方程为. (Ⅱ)解:设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2. 由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组 消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或. 所以,k的值为 (20)本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分. (I)解:由已知,,有. 令,解得x=0. 由a>1,可知当x变化时,,的变化情况如下表: x 0 0 + 极小值 所以函数的单调递减区间,单调递增区间为. (II)证明:由,可得曲线在点处的切线斜率为. 由,可得曲线在点处的切线斜率为. 因为这两条切线平行,故有,即. 两边取以a为底的对数,得,所以. (III)证明:曲线在点处的切线l1:. 曲线在点处的切线l2:. 要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.学*科网 即只需证明当时,方程组有解, 由①得,代入②,得. ③ 因此,只需证明当时,关于x1的方程③有实数解. 设函数,即要证明当时,函数存在零点. ,可知时,;时,单调递减,又 ,,故存在唯一的x0,且x0>0,使得,即 . 由此可得在上单调递增,在上单调递减. 在处取得极大值. 因为,故, 所以. 下面证明存在实数t,使得. 由(I)可得, 当时, 有, 所以存在实数t,使得 因此,当时,存在,使得. 所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:2018年度高考天津理科数学带规范标准答案.doc
链接地址:https://www.taowenge.com/p-2557164.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开