初中数学七年级下册第7章平面图形的认识二7.5多边形的内角和与外角和作业设.doc
《初中数学七年级下册第7章平面图形的认识二7.5多边形的内角和与外角和作业设.doc》由会员分享,可在线阅读,更多相关《初中数学七年级下册第7章平面图形的认识二7.5多边形的内角和与外角和作业设.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、7.5 多边形的内角和与外角和一选择题(共13小题)1如果三角形的三个内角的度数比是2:3:4,则它是()A锐角三角形B钝角三角形C直角三角形D钝角或直角三角形2如图,在ABC中,B50,A30,CD平分ACB,CEAB于点E,则DCE的度数是()A5B8C10D153如图,将一张三角形纸片ABC的一角折叠,使点A落在ABC外的A处,折痕为DE如果A,CEA,BDA,那么下列式子中正确的是()A2+B+2C+D1804如图,A70,B40,C20,则BOC()A130B120C110D1005星期天小明给在建筑工地的爸爸送工具,见一人字架,经测得1110,则3比2大()A50B65C70D13
2、06不是利用三角形稳定性的是()A自行车的三角形车架B三角形房架C照相机的三角架D矩形门框的斜拉条7一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A8或9B2或8C7或8或9D8或9或108从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形则m、n的值分别为()A4,3B3,3C3,4D4,49下列语句正确的是()A线段AB是点A与点B的距离B过n边形的每一个顶点有(n3)条对角线C各边相等的多边形是正多边形D两点之间的所有连线中,直线最短10下列结论正确的是()A两直线被第三条直线所截,同位角相等B三角形的一个外角等于两个内角的和C多边形最多有三个外角是
3、钝角D连接平面上三点构成的图形是三角形11如图,在六边形ABCDEF中,若A+B+C+D500,DEF与AFE的平分线交于点G,则G等于()A55B65C70D8012用一些形状大小完全相同的图形不能镶嵌成平面图案的是()A三角形B菱形C正六边形D正七边形13下列组合不能密铺平面的是()A正三角形、正方形和正六边形B正三角形、正方形和正十二边形C正三角形、正六边形和正十二边形D正方形、正六边形和正十二边形二填空题(共8小题)14在正三角形、正方形、正六边形、正八边形中,用相同的正多边形不能铺满地面的是 15一幅图案在某个顶点处由三个边长相等的正多边形镶嵌而成其中的两个分别是正六边形和正十二边形
4、,则第三个正多边形的边数是 16如图,在ABC中,A40,ABC与ACB的平分线相交于点P,则BPC的度数为 17正十边形一个内角度数为 18如图,在ABC中,B63,C51,AD是BC边上的高,AE是BAC的平分线,则DAE的度数 19将一副直角三角板如图放置,使两直角重合,则1 度20分别根据下列图1、图2、图3中已知角的度数,写出相应的度数(1) ;(2) ;(3) 21如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 三解答题(共5小题)22如图所示,在四边形ABCD中,点E在BC上,ABDE,B78,C60,求EDC的度数23如图,在ABC中,ABC的平分线与C
5、的外角ACD的平分线相交于点E,EBD30,ECD65,求A的度数24如图,在折纸活动中,小明制作了一张ABC的纸片,点D,E分别在边AB,AC上,将ABC沿着DE折叠压平,A与A重合,若A75,求1+2的度数25在各个内角都相等的多边形中,一个外角等于一个内角的,求这个多边形每一个内角的度数和它的边数26【问题】用n边形的对角线把n边形分割成(n2)个三角形,共有多少种不同的分割方案(n4)?【探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论不妨假设n边形的分割方案有Pn种探究一:用四边形的对角线把四边形分割成2个三角形,共有多
6、少种不同的分割方案?如图,图,显然,只有2种不同的分割方案所以,P42,探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:第1类:如图,用A,E与B连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有P4种不同的分割方案第2类:如图,用A,E与C连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为P4种分割方案第3类:如图,用A,E与D连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案,所以,此类共有
7、P4种不同的分割方案所以,P5P4+P4+P4P4P45(种)探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:第1类:如图,用A,F与B连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案所以,此类共有P5种不同的分割方案第2类:如图,用A,F与C连接,先把六边形分割转化成2个三角形和1个四边形再把四边形分割成2个三角形,由探究一知,有P4种不同的分割方案所以,此类共有P4种分割方案第3类:如图,用A,F与D连接,先把六边形分割转化成2个三角形和1个四边形,再把四边形分割成2个三角形
8、,由探究一知,有P4种不同的分割方案,所以,此类共有P4种分割方案第4类:如图,用A,F与E连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有P5种不同的分割方案所以,此类共有P5种分割方案所以,P6P5+P4+P4+P5P5+P5+P5+P5P514(种)探究四:用七边形的对角线把七边形分割成5个三角形,则P7与P6的关系为:P7P6,共有 种不同的分割方案【结论】用n边形的对角线把n边形分割成(n2)个三角形,共有多少种不同的分割方案(n4)?(直接写出Pn与Pn1的关系式,不写解答过程)【应用】用八边形的对角线把八边形分割成6个三角形,共有多少种
9、不同的分割方案?(应用上述结论,写出解答过程)参考答案与试题解析一选择题(共13小题)1如果三角形的三个内角的度数比是2:3:4,则它是()A锐角三角形B钝角三角形C直角三角形D钝角或直角三角形【分析】利用“设k法”求出最大角的度数,然后作出判断即可【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k180,解得k20,所以,最大的角为42080,所以,三角形是锐角三角形故选:A【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便2如图,在ABC中,B50,A30,CD平分ACB,CEAB于点E,则DCE的度数是()A5B8C10D15【分析】依据直角三角
10、形,即可得到BCE40,再根据A30,CD平分ACB,即可得到BCD的度数,再根据DCEBCDBCE进行计算即可【解答】解:B50,CEAB,BCE40,又A30,CD平分ACB,BCDBCA(1805030)50,DCEBCDBCE504010,故选:C【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180是解答此题的关键3如图,将一张三角形纸片ABC的一角折叠,使点A落在ABC外的A处,折痕为DE如果A,CEA,BDA,那么下列式子中正确的是()A2+B+2C+D180【分析】根据三角形的外角得:BDAA+AFD,AFDA+CEA,代入已知可得结论【解答】解:由折叠得:AA,BDA
11、A+AFD,AFDA+CEA,A,CEA,BDA,BDA+2+,故选:A【点评】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键4如图,A70,B40,C20,则BOC()A130B120C110D100【分析】延长BO,交AC于点D,可得BOCC+ODC,ODCA+B,从而得出答案【解答】解:延长BO,交AC于点D,BOCC+ODC,ODCA+B,A70,B40,C20,BOCC+A+B20+80+30130故选:A【点评】本题考查了三角形外角的性质,三角形的外角等于和它不相邻的两个内角的和5星期天小明给在建筑工地的爸爸送工具,见一人字架,经测得1110,则
12、3比2大()A50B65C70D130【分析】由三角形的外角性质知34+2,又已知1110,根据平角的定义易得4,从而计算出3比2大多少【解答】解:1+4180,1110,47032+432470故选:C【点评】本题考查了三角形外角与内角的关系、平角的定义三角形的外角与内角间的关系:外角与相邻内角互补;外角等于不相邻的两个内角的和6不是利用三角形稳定性的是()A自行车的三角形车架B三角形房架C照相机的三角架D矩形门框的斜拉条【分析】利用三角形的稳定性进行解答【解答】解:照相机的三角架不是利用其稳定性,A、B、D都是利用了三角形的稳定性,故选:C【点评】本题考查了三角形的稳定性在实际生活中的应用
13、问题,关键是分析能否在同一平面内组成三角形7一个多边形截去一角后,变成一个八边形则这个多边形原来的边数是()A8或9B2或8C7或8或9D8或9或10【分析】根据截去一个角后边数增加1,不变,减少1讨论得解【解答】解:截去一个角后边数可以增加1,不变,减少1,原多边形的边数是7或8或9故选:C【点评】本题考查了多边形,关键是理解多边形截去一个角后边数有增加1,不变,减少1三种情况8从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形则m、n的值分别为()A4,3B3,3C3,4D4,4【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n3,分成的三角形数是n2【解答】解
14、:对角线的数量633条;分成的三角形的数量为n24个故选:C【点评】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n3,分成的三角形数是n29下列语句正确的是()A线段AB是点A与点B的距离B过n边形的每一个顶点有(n3)条对角线C各边相等的多边形是正多边形D两点之间的所有连线中,直线最短【分析】利用线段的性质和多边形的性质与特征,逐一判定即可【解答】解:A、应是线段AB的长度是点A与点B之间的距离,故错误;B、过n边形的每一个顶点有(n3)条对角线,故正确;C、各角相等,各边相等的多边形是正多边形,故错误;D、连接两点
15、的所有连线中,线段最短,故错误故选:B【点评】此题考查多边形的意义与性质以及线段的意义与性质的运用10下列结论正确的是()A两直线被第三条直线所截,同位角相等B三角形的一个外角等于两个内角的和C多边形最多有三个外角是钝角D连接平面上三点构成的图形是三角形【分析】根据平行线的性质定理,以及三角形的外角的性质定理,三角形的定义即可判断【解答】解:A、两平行直线被第三条直线所截,同位角相等,故选项错误;B、三角形的一个外角等于两个不相邻内角的和,故选项错误;C、多边形的外角和是360,若外角的个数超过3个,则外角的和就超过360,因而最多有3个外角,正确;D、连接平面上不在一条直线上的三点构成的图形
16、是三角形,故选项错误故选:C【点评】本题考查了平行线的性质定理,以及三角形的外角的性质定理,是一个基础题11如图,在六边形ABCDEF中,若A+B+C+D500,DEF与AFE的平分线交于点G,则G等于()A55B65C70D80【分析】首先根据三角形的内角和定理,求出DEF与AFE的度数和是多少,进而求出GEF与GFE的度数和是多少;然后在GEF中,根据三角形的内角和定理,求出G等于多少即可【解答】解:六边形ABCDEF的内角和是:(62)1804180720A+B+C+D500,DEF+AFE720500220,GE平分DEF,GF平分AFE,GEF+GFE(DEF+AFE)220110,
17、G18011070故选:C【点评】此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n2)180 (n3)且n为整数)(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为36012用一些形状大小完全相同的图形不能镶嵌成平面图案的是()A三角形B菱形C正六边形D正七边形【分析】分别求出三角形的内角和,各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断【解答】解:A、三角形的内角和是180,6个能密铺;B、菱形的内角和是360,4个能密铺;C、正六边形每个内角为120度,能找出360度,能密铺;D、正七边形每个内
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 年级 下册 平面 图形 认识 7.5 多边形 内角 外角 作业
限制150内