2021高考数学一轮复习课后限时集训16利用导数解决函数的极值最值理.doc
《2021高考数学一轮复习课后限时集训16利用导数解决函数的极值最值理.doc》由会员分享,可在线阅读,更多相关《2021高考数学一轮复习课后限时集训16利用导数解决函数的极值最值理.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课后限时集训16利用导数解决函数的极值、最值建议用时:45分钟一、选择题1函数y在0,2上的最大值是()A.B.C0 D.A易知y,x0,2,令y0,得0x1,令y0,得1x2,所以函数y在0,1上单调递增,在(1,2上单调递减,所以y在0,2上的最大值是y|x1,故选A.2已知函数f(x)cos xaln x在x处取得极值,则a()A.B.C. DCf(x)sin x,且f0,0,即a,经验证,符合题意故选C.3函数f(x)x3bx2cxd的大致图像如图所示,则xx等于()A. B.C. D.C函数f(x)的图像过原点,所以d0.又f(1)0且f(2)0,即1bc0且84b2c0,解得b1,
2、c2,所以函数f(x)x3x22x,所以f(x)3x22x2,由题意知x1,x2是函数的极值点,所以x1,x2是f(x)0的两个根,所以x1x2,x1x2,所以xx(x1x2)22x1x2.4(2019东莞模拟)若x1是函数f(x)axln x的极值点,则()Af(x)有极大值1 Bf(x)有极小值1Cf(x)有极大值0 Df(x)有极小值0Af(x)axln x,x0,f(x)a,由f(1)0得a1,f(x)1.由f(x)0得0x1,由f(x)0得x1,f(x)在(0,1)上单调递增,在(1,)上单调递减f(x)极大值f(1)1,无极小值,故选A.5已知函数f(x)x33x29x1,若f(x
3、)在区间k,2上的最大值为28,则实数k的取值范围为()A3,) B(3,)C(,3) D(,3D由题意知f(x)3x26x9,令f(x)0,解得x1或x3,所以f(x),f(x)随x的变化情况如下表:x(,3)3(3,1)1(1,)f(x)00f(x)极大值极小值又f(3)28,f(1)4,f(2)3,f(x)在区间k,2上的最大值为28,所以k3.二、填空题6设aR,若函数yexax有大于零的极值点,则实数a的取值范围是_(,1)yexax,yexa.函数yexax有大于零的极值点,则方程yexa0有大于零的解,x0时,ex1,aex1.7已知函数f(x)ln xax存在最大值0,则a_.
4、f(x)a,x0.当a0时,f(x)a0恒成立,函数f(x)单调递增,不存在最大值;当a0时,令f(x)a0,解得x.当0x时,f(x)0,函数f(x)单调递增;当x时,f(x)0,函数f(x)单调递减f(x)maxfln 10,解得a.8做一个无盖的圆柱形水桶,若要使其体积是27,且用料最省,则圆柱的底面半径为_3设圆柱的底面半径为R,母线长为l,则VR2l27,l,要使用料最省,只需使圆柱的侧面积与下底面面积之和S最小由题意,SR22RlR22.S2R,令S0,得R3,根据单调性得当R3时,S最小三、解答题9已知函数f(x)ln xax(aR)(1)当a时,求f(x)的极值;(2)讨论函数
5、f(x)在定义域内极值点的个数解(1)当a时,f(x)ln xx,函数f(x)的定义域为(0,),f(x).令f(x)0,得x2,于是当x变化时,f(x),f(x)的变化情况如下表:x(0,2)2(2,)f(x)0f(x)极大值故f(x)在定义域上的极大值为f(2)ln 21,无极小值(2)由(1)知,函数f(x)的定义域为(0,),f(x)a(x0)当a0时,f(x)0在(0,)上恒成立,即函数f(x)在(0,)上单调递增,此时函数f(x)在定义域上无极值点;当a0时,令f(x)0,得x.当x时,f(x)0,当x时,f(x)0,故函数f(x)在x处有极大值综上所述,当a0时,函数f(x)无极
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 课后 限时 集训 16 利用 导数 解决 函数 极值 最值理
限制150内