2021高考数学一轮复习课后限时集训41综合法分析法反证法数学归纳法理北.doc
《2021高考数学一轮复习课后限时集训41综合法分析法反证法数学归纳法理北.doc》由会员分享,可在线阅读,更多相关《2021高考数学一轮复习课后限时集训41综合法分析法反证法数学归纳法理北.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课后限时集训41综合法、分析法、反证法、数学归纳法建议用时:45分钟一、选择题1用反证法证明命题:“三角形三个内角至少有一个不大于60”时,应假设()A三个内角都不大于60B三个内角都大于60C三个内角至多有一个大于60D三个内角至多有两个大于60B至少有一个包含“一个、两个和三个”,故其对立面三个内角都大于60,故选B.2分析法又称执果索因法,已知x0,用分析法证明1Bx24Cx20Dx21C因为x0,所以要证1,只需证()22,即证00,因为x0,所以x20成立,故原不等式成立3(2019哈尔滨模拟)用数学归纳法证明不等式“1n(nN,n2)”时,由nk(k2)时不等式成立,推证nk1时,
2、左边应增加的项数是()A2k1B2k1C2kD2k1Cnk1时,左边1,增加了,共(2k11)(2k1)2k项,故选C.4设f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,若x1x20,则f(x1)f(x2)的值()A恒为负值B恒等于零C恒为正值D无法确定正负A由f(x)是定义在R上的奇函数,且当x0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1x20,可知x1x2,f(x1)f(x2)f(x2),则f(x1)f(x2)0,故选A.5设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)k2成立时,总可推出f(k1)(k1)2成立”那么,下列命题总成立的是
3、()A若f(1)1成立,则f(10)100成立B若f(2)4成立,则f(1)1成立C若f(3)9成立,则当k1时,均有f(k)k2成立D若f(4)16成立,则当k4时,均有f(k)k2成立D由条件可知不等式的性质只对大于等于号成立,所以A错误;若f(1)1成立,则得到f(2)4,与f(2)2要比较与2的大小,只需比较()2与(2)2的大小,只需比较672与854的大小,只需比较与2的大小,只需比较42与40的大小,4240,2.7用数学归纳法证明不等式的过程中,由nk推导nk1时,不等式的左边增加的式子是_不等式的左边增加的式子是.8若二次函数f(x)4x22(p2)x2p2p1,在区间1,1
4、内至少存在一点c,使f(c)0,则实数p的取值范围是_若二次函数f(x)0在区间1,1内恒成立,则解得p3或p,故满足题干要求的p的取值范围为.三、解答题9已知x,y,z是互不相等的正数,且xyz1,求证:8.证明因为x,y,z是互不相等的正数,且xyz1,所以1,1,1,由,得8.10设数列an是公比为q的等比数列,Sn是它的前n项和(1)求证:数列Sn不是等比数列;(2)数列Sn是等差数列吗?为什么?解(1)证明:假设数列Sn是等比数列,则SS1S3,即a(1q)2a1a1(1qq2),因为a10,所以(1q)21qq2,即q0,这与公比q0矛盾,所以数列Sn不是等比数列(2)当q1时,S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 一轮 复习 课后 限时 集训 41 综合法 分析 反证法 归纳 法理
限制150内