项目工程力学(静力学规范标准答案).doc

收藏

编号:2565524    类型:共享资源    大小:15.38MB    格式:DOC    上传时间:2020-04-20
14
金币
关 键 词:
项目 工程力学 静力学 规范 标准答案
资源描述:
/. 第一章 习题 下列习题中,凡未标出自重的物体,质量不计。接触处都不计摩擦。 1-1试分别画出下列各物体的受力图。 1-2试分别画出下列各物体系统中的每个物体的受力图。 1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。 1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。 1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。 1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。 1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。 1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。 参考答案 1-1解: 1-2解: 1-3解: 1-4解: 1-5解: 1-6解: 1-7解: 1-8解: 第二章 习题 参考答案 2-1解:由解析法, 故: 2-2解:即求此力系的合力,沿OB建立x坐标,由解析法,有 故: 方向沿OB。 2-3解:所有杆件均为二力杆件,受力沿直杆轴线。 (a) 由平衡方程有: 联立上二式,解得: (拉力) (压力) (b) 由平衡方程有: 联立上二式,解得: (拉力) (压力) (c) 由平衡方程有: 联立上二式,解得: (拉力) (压力) (d) 由平衡方程有: 联立上二式,解得: (拉力) (拉力) 2-4解:(a)受力分析如图所示: 由 由 (b)解:受力分析如图所示:由 联立上二式,得: 2-5解:几何法:系统受力如图所示 三力汇交于点D,其封闭的力三角形如图示 所以: (压力) (与X轴正向夹150度) 2-6解:受力如图所示: 已知, , 由 由 2-7解:受力分析如图所示,取左半部分为研究对象 由 联立后,解得: 由二力平衡定理 2-8解:杆AB,AC均为二力杆,取A点平衡 由 联立上二式,解得: (受压) (受压) 2-9解:各处全为柔索约束,故反力全为拉力,以D,B点分别列平衡方程 (1)取D点,列平衡方程 由 (2)取B点列平衡方程 由 2-10解:取B为研究对象: 由 取C为研究对象: 由 由 联立上二式,且有 解得: 取E为研究对象: 由 故有: 2-11解:取A点平衡: 联立后可得: 取D点平衡,取如图坐标系: 由对称性及 2-12解:整体受力交于O点,列O点平衡 由 联立上二式得: (压力) 列C点平衡 联立上二式得: (拉力) (压力) 2-13解: (1)取DEH部分,对H点列平衡 联立方程后解得: (2)取ABCE部分,对C点列平衡 且 联立上面各式得: (3)取BCE部分。根据平面汇交力系平衡的几何条件。 2-14解:(1)对A球列平衡方程 (1) (2) (2)对B球列平衡方程 (3) (4) 且有: (5) 把(5)代入(3),(4) 由(1),(2)得: (6) 又(3),(4)得: (7) 由(7)得: (8) 将(8)代入(6)后整理得: 2-15解:,和P构成作用于AB的汇交力系,由几何关系: 又 整理上式后有: 取正根 第三章 习题 参考答案 3-1解: 3-2解:构成三个力偶 因为是负号,故转向为顺时针。 3-3解:小台车受力如图,为一力偶系,故 , 由 3-4解:锤头受力如图,锤头给两侧导轨的侧压力和构成一力偶,与,构成力偶平衡 由 3-5解:电极受力如图,等速直线上升时E处支反力为零 即: 且有: 由 3-6解:A,B处的约束反力构成一力偶 由 3-7解:,受力如图, 由,分别有: 杆: (1) 杆: (2) 且有: (3) 将(3)代入(2)后由(1)(2)得: 3-8解:杆ACE和BCD受力入图所示,且有: 对ACE杆: 对BCD杆: 第四章 习题 4-1 已知F1=60N,F2=80N,F3=150N,m=100N.m,转向为逆时针,θ=30图中距离单位为m。试求图中力系向O点简化结果及最终结果。 4-2 已知物体所受力系如图所示,F=10Kn,m=20kN.m,转向如图。 (a)若选择x轴上B点为简化中心,其主矩LB=10kN.m,转向为顺时针,试求B点的位置及主矢R’。 (b)若选择CD线上E点为简化中心,其主矩LE=30kN.m,转向为顺时针,α=45,试求位于CD直线上的E点的位置及主矢R’。 4-3 试求下列各梁或刚架的支座反力。 解: (a) 受力如图 由∑MA=0 FRB•3a-Psin30•2a-Q•a=0 ∴FRB=(P+Q)/3 由 ∑x=0 FAx-Pcos30=0 ∴FAx=P 由∑Y=0 FAy+FRB-Q-Psin30=0 ∴FAy=(4Q+P)/6 4-4 高炉上料的斜桥,其支承情况可简化为如图所示,设A和B为固定铰,D为中间铰,料车对斜桥的总压力为Q,斜桥(连同轨道)重为W,立柱BD质量不计,几何尺寸如图示,试求A和B的支座反力。 4-5 齿轮减速箱重W=500N,输入轴受一力偶作用,其力偶矩m1=600N.m,输出轴受另一力偶作用,其力偶矩m2=900N.m,转向如图所示。试计算齿轮减速箱A和B两端螺栓和地面所受的力。 4-6 试求下列各梁的支座反力。 (a) (b) 4-7 各刚架的载荷和尺寸如图所示,图c中m2>m1,试求刚架的各支座反力。 4-8 图示热风炉高h=40m,重W=4000kN,所受风压力可以简化为梯形分布力,如图所示,q1=500kN/m,q2=2.5kN/m。可将地基抽象化为固顶端约束,试求地基对热风炉的反力。 4-9 起重机简图如图所示,已知P、Q、a、b及c,求向心轴承A及向心推力轴承B的反力。 4-10 构架几何尺寸如图所示,R=0.2m,P=1kN。E为中间铰,求向心轴承A的反力、向心推力轴承B的反力及销钉C对杆ECD的反力。 4-11 图示为连续铸锭装置中的钢坯矫直辊。钢坯对矫直辊的作用力为一沿辊长分布的均布力q,已知q=1kN/mm,坯宽1.25m。试求轴承A和B的反力。 4-12 立式压缩机曲轴的曲柄EH转到垂直向上的位置时,连杆作用于曲柄上的力P最大。现已知P=40kN,飞轮重W=4kN。求这时轴承A和B的反力。 4-13 汽车式起重机中,车重W1=26kN,起重臂CDE重G=4.5kN,起重机旋转及固定部分重W2=31kN,作用线通过B点,几何尺寸如图所示。这时起重臂在该起重机对称面内。求最大起重量Pmax。 4-14 平炉的送料机由跑车A及走动的桥B所组成,跑车装有轮子,可沿桥移动。跑车下部装有一倾覆操纵柱D,其上装有料桶C。料箱中的载荷Q=15kN,力Q与跑车轴线OA的距离为5m,几何尺寸 如图所示。如欲保证跑车不致翻倒,试问小车连同操纵柱的重量W最小应为多少? 4-15 两根位于垂直平面内的均质杆的底端彼此相靠地搁在光滑地板上,其上端则靠在两垂直且光滑的墙上,质量分别为P1与P2。求平衡时两杆的水平倾角α1与α2的关系。 4-16 均质细杆AB重P,两端与滑块相连,滑块A和B可在光滑槽内滑动,两滑块又通过滑轮C用绳索相互连接,物体系处于平衡。 (a)用P和θ表示绳中张力T; (b)当张力T=2P时的θ值。 4-17 已知a,q和m,不计梁重。试求图示各连续梁在A、B和C处的约束反力。 4-18 各刚架的载荷和尺寸如图所示,不计刚架质量,试求刚架上各支座反力。 4-19 起重机在连续梁上,已知P=10kN,Q=50kN,不计梁质量,求支座A、B和D的反力。 4-20 箱式电炉炉体结构如图a所示。D为炉壳,E为炉顶拱,H为绝热材料,I为边墙,J为搁架。在实际炉子设计中,考虑到炉子在高温情况下拱顶常产生裂缝,可将炉拱简化成三铰拱,如图b所示。已知拱顶是圆弧形,跨距l=1.15m,拱高h=0.173m,炉顶重G=2kN。试求拱脚A和B处反力。 4-21 图示厂房房架是由两个刚架AC和BC用铰链连接组成,A与B两铰链固结于地基,吊车梁宰房架突出部分D和E上,已知刚架重G1=G2=60kN,吊车桥重Q=10kN,风力F=10kN,几何尺寸如图 所示。D和E两点分别在力G1和G2的作用线上。求铰链A、B和C的反力。 4-22 图示构架由滑轮D、杆AB和CBD构成,一钢丝绳绕过滑轮,绳的一端挂一重物,重量为G,另一端系在杆AB的E处,尺寸如图所示,试求铰链A、B、C和D处反力。 4-23 桥由两部分构成,重W1=W2=40kN,桥上有载荷P=20kN,尺寸如图所示,试求出铰链A、B和C的反力。 4-24 图示结构,在C、D、E、F、H处均为铰接。已知P1=60kN,P2=40 kN,P3=70kN,几何尺寸如图所示。试求各杆所受的力。 4-25 构架的载荷和尺寸如图所示,已知P=24kN,求铰链A和辊轴B的反力及销钉B对杆ADB的反力。 4-26 构架的载荷和尺寸如图所示,已知P=40kN,R=0.3m,求铰链A和B的反力及销钉C对杆ADC的反力。 4-27 图示破碎机传动机构,活动夹板AB长为600mm,假设破碎时矿石对活动夹板作用力沿垂直于AB方向的分力P=1kN,BC=CD=600mm,AH=400mm,OE=100mm,图示位置时,机构平衡。试求电机对杆OE作用的力偶的力偶矩m0。 4-28 曲柄滑道机构如图所示,已知m=600N.m,OA=0.6m,BC=0.75m。机构在图示位置处于平衡,α=30,β=60。求平衡时的P值及铰链O和B反力。 4-29 插床机构如图所示,已知OA=310mm,O1B=AB=BC=665mm,CD=600mm,OO1=545mm,P=25kN。在图示位置:OO1A在铅锤位置;O1C在水平位置,机构处于平衡,试求作用在曲柄OA上的主动力偶的力偶矩m。 4-30 在图示机构中,OB线水平,当B、D、F在同一铅垂线上时,DE垂直于EF,曲柄OA正好在铅锤位置。已知OA=100mm,BD=BC=DE=100mm,EF=100mm,不计杆重和摩擦,求图示位置平衡时m/P的值。 4-31 图示屋架为锯齿形桁架。G1=G2=20kN,W1=W2=10kN,几何尺寸如图所示,试求各杆内力。 4-32 图示屋架桁架。已知F1=F2=F4=F5=30kN,F3=40kN,几何尺寸如图所示,试求各杆内力。 4-33 桥式起重机机架的尺寸如图所示。P1=100kN,P2=50kN。试求各杆内力。 4-34图示屋架桁架,载荷G1=G2=G3=G4=G5=G,几何尺寸如图所示,试求:杆1、2、3、4、5和6 的内力。 参考答案 4-1 解: ∴α=19642′ (顺时针转向) 故向O点简化的结果为: 由于FR′≠0,L0≠0,故力系最终简化结果为一合力,大小和方向与主矢相同,合力FR的作用线距O点的距离为d。 FR=FR=52.1N d=L0/FR=5.37m 4-2 解:(a)设B点坐标为(b,0) LB=∑MB()=-m-Fb=-10kN.m ∴b=(-m+10)/F=-1m ∴B点坐标为(-1,0) = ∴FR′=10kN,方向与y轴正向一致 (b)设E点坐标为(e,e) LE=∑ME()=-m-F•e=-30kN.m ∴e=(-m+30)/F=1m ∴E点坐标为(1,1) FR′=10kN 方向与y轴正向一致 4-3解:(a) 受力如图 由∑MA=0 FRB•3a-Psin30•2a-Q•a=0 ∴FRB=(P+Q)/3 由 ∑x=0 FAx-Pcos30=0 ∴FAx=P 由∑Y=0 FAy+FRB-Q-Psin30=0 ∴FAy=(4Q+P)/6 (b)受力如图 由∑MA=0 FRB•cos30-P•2a-Q•a=0 ∴FRB=(Q+2P) 由 ∑x=0 FAx-FRB•sin30=0 ∴FAx=(Q+2P) 由∑Y=0 FAy+FRB•cos30-Q-P=0 ∴FAy=(2Q+P)/3 (c)解:受力如图: 由∑MA=0 FRB•3a+m-P•a=0 ∴FRB=(P-m/a)/3 由 ∑x=0 FAx=0 由∑Y=0 FAy+FRB-P=0 ∴FAy=(2P+m/a)/3 (d)解:受力如图: 由∑MA=0 FRB•2a+m-P•3a=0 ∴FRB=(3P-m/a)/2 由 ∑x=0 FAx=0 由∑Y=0 FAy+FRB-P=0 ∴FAy=(-P+m/a)/2 (e)解:受力如图: 由∑MA=0 FRB•3-P•1.5-Q•5=0 ∴FRB=P/2+5Q/3 由 ∑x=0 FAx+Q=0 ∴FAx=-Q 由∑Y=0 FAy+FRB-P=0 ∴FAy=P/2-5Q/3 (f)解:受力如图: 由∑MA=0 FRB•2+m-P•2=0 ∴FRB=P-m/2 由 ∑x=0 FAx+P=0 ∴FAx=-P 由∑Y=0 FAy+FRB =0 ∴FAy=-P+m/2 4-4解:结构受力如图示,BD为二力杆 由∑MA=0 -FRB•a+Q•b+W•l/2•cosα=0 ∴FRB=(2Qb+Wlcosα)/2a 由∑Fx=0 -FAx-Qsinα=0 ∴FAx=-Qsinα 由∑Fy=0 FRB+FAy-W-Qcosα=0 ∴FAy=Q(cosα-b/a)+W(1-lcosα/2a) 4-5 解:齿轮减速箱受力如图示, 由∑MA=0 FRB0.5-W0.2-m1-m2=0 FRB=3.2kN 由∑Fy=0 FRA+FRB-W=0 FRA=-2.7kN 4-6 解: (a)由∑Fx=0 FAx=0 (b) 由∑Fx=0 FAx=0 由∑Fy=0 FAy=0 由∑Fy=0 FAy-qa-P=0 由∑M=0 MA-m=0 MA=m ∴FAy=qa+P 由∑M=0 MA-q•a•a/2-Pa=0 ∴MA=qa2/2+Pa (c) (d) (c) 由∑Fx=0 FAx+P=0 (d) 由∑Fx=0 FAx=0 ∴FAx=-P 由∑MA=0 FRB•5a+m1-m2-q•3a•3a/2=0 由∑Fy=0 FAy-q•l/2=0 ∴FRB=0.9qa+(m2-m1)/5a FAy=ql/2 由∑Fy=0 FAy+FRB-q•3a=0 由∑M=0 MA-q•l/2•l/4-m-Pa=0 FAy=2.1qa+(m1-m2)/5a ∴MA=ql2/8+m+Pa 4-7 解: (a) (b) (a)∑MA=0 FRB•6a-q(6a)2/2-P•5a=0 ∴FRB=3qa+5P/6 ∑Fx=0 FAx+P=0 ∴FAx =-P ∑Fy=0 FAy+FRB-q•6a=0 ∴FAy=3qa-5P/6 (b) ∑MA=0 MA-q(6a)2/2-P•2a=0 ∴MA=18qa2+2Pa ∑Fx=0 FAx+q•6a=0 ∴FAx =-6qa ∑Fy=0 FAy-P=0 ∴FAy=P (c) ∑MA=0 MA+m1-m2-q•6a•2a-P•4a=0 ∴MA=12qa2+4Pa+m2-m1 ∑Fx=0 FAx+P=0 ∴FAx=-P ∑Fy=0 FAy-q•6a=0 ∴FAy=6qa (d) ∑MA=0 MA+q(2a)2/2-q•2a•3a=0 ∴MA=4qa2 ∑Fx=0 FAx-q•2a=0 ∴FAx =2qa ∑Fy=0 FAy-q•2a=0 ∴FAy =2qa 4-8解:热风炉受力分析如图示, ∑Fx=0 Fox+q1•h+(q2-q1)•h/2=0 ∴Fox=-60kN ∑Fy=0 FAy-W=0 ∴FAy=4000kN ∑MA=0 M0-q•h•h/2-(q2-q1)•h•2h/3/2=0 ∴M0=1467.2kN•m 4-9解:起重机受力如图示, ∑MB=0 -FRA•c-P•a-Q•b=0 ∴FRA=-(Pa+Qb)/c ∑Fx=0 FRA+FBx=0 ∴FBx=(Pa+Qb)/c ∑Fy=0 FBy-P-Q=0 ∴FBy=P+Q 4-10 解:整体受力如图示 ∑MB=0 -FRA5.5-P4.2=0 ∴FRA=-764N ∑Fx=0 FBx+FRA=0 ∴FBx=764N ∑Fy=0 FBy-P=0 ∴FBy=1kN 由∑ME=0 FCy2+P0.2-P4.2=0 ∴FCy=2kN 由∑MH=0 F’Cx2-FCy2-P2.2+P0.2=0 ∴FCx=F’Cx=3kN 4-11解:辊轴受力如图示, 由∑MA=0 FRB1600-q1250(1250/2+175)=0 ∴FRB=625N 由∑Fy=0 FRA+FRB-q1250=0 ∴FRA=625N 4-12 解:机构受力如图示, ∑MA=0 -P0.3+FRB0.6-W0.9=0 ∴FRB=26kN ∑Fy=0 FRA+FRB-P-W=0 ∴FRA=18kN 4-13 解:当达到最大起重质量时,FNA=0 由∑MB=0 W1α+W20-G2.5-Pmax5.5=0 ∴Pmax=7.41kN 4-14解:受力如图示,不致翻倒的临界状态是FNE=0 由∑MF=0 W1m-Q(5-1)=0 ∴W=60kN 故小车不翻倒的条件为W≥60kN 4-15解:设左右杆长分别为l1、l2,受力如图示 左杆:∑MO1=0 P1(l1/2)cosα1-FAl1sinα1=0 ∴FA=ctgα1P1/2 右杆:∑MO2=0 -P2(l2/2)cosα2+FAl2sinα2=0 ∴FA=ctgα2P2/2 由FA=FA ∴P1/P2=tgα1/tgα2 4-16解:设杆长为l,系统受力如图 (a) ∑M0=0 P •l/2cosθ+T•l•sinθ-Tlcosθ=0 ∴T=P/2(1-tgθ) (b)当T=2P时, 2P= P/2(1-tgθ) ∴tgθ3/4 即θ≈3652′ 4-17 解: (a) (a)取BC杆: ∑MB=0 FRC•2a=0 ∴FRC=0 ∑Fx=0 FBx=0 ∑Fy=0 -FBy+FRC=0 ∴FBy=0 取整体: ∑MA=0 -q•2a•a+FRC•4a+MA=0 ∴MA=2qa2 ∑Fx=0 FAx=0 ∑Fy=0 FAy+FRC-q•2a=0  ∴FAy==2qa (b) (b)取BC杆: ∑MB=0 FRC•2a-q•2a•a=0 ∴FRC=qa ∑Fx=0 FBx=0 ∑Fy=0 FRC-q•2a-FBy=0 ∴FBy=-qa 取整体: ∑MA=0 MA+FRC•4a-q•3a•2.5a=0 ∴MA=3.5qa2 ∑Fx=0 FAx=0 ∑Fy=0 FAy+FRC-q•3a=0  ∴FAy==2qa (c) (c)取BC杆: ∑MB=0 FRC•2a =0 ∴FRC=0 ∑Fx=0 FBx=0 ∑Fy=0 FRC-FBy=0 ∴FBy=0 取整体: ∑MA=0 MA+FRC•4a-m=0 ∴MA=m ∑Fx=0 FAx=0 ∑Fy=0 FAy+FRC=0  ∴FAy=0 (d) (d)取BC杆: ∑MB=0 FRC•2a-m=0 ∴FRC=m/2a ∑Fx=0 FBx=0 ∑Fy=0 FRC-FBy=0 ∴FBy=m/2a 取整体: ∑MA=0 MA+FRC•4a-m=0 ∴MA=-m ∑Fx=0 FAx=0 ∑Fy=0 FAy+FRC=0  ∴FAy=-m/2a 4-18 解: (a)取BE部分 ∑ME=0 FBx5.4-q5.45.4/2=0 ∴FBx=2.7q 取DEB部分: ∑MD=0 FBx5.4+FBy6-q5.45.4/2=0 ∴FBy=0 取整体: ∑MA=0 FBy6+ q5.45.4/2-FRCcos453=0 ∴FRC=6.87q ∑Fx=0 FRCcos45+FAx+FBx-q5.4=0 ∴FAx=-2.16q ∑Fy=0 FRCsin45+FAy+FBy=0 ∴FAy=-4.86q (b)取CD段, ∑MC=0 FRD4-q2/242=0 ∴FRD=2q2 取整体: ∑MA=0 FRB8+FRD12q2410-q164-P4=0 ∑Fx=0 P+FAx=0 ∴FAx=-P ∑Fy=0 FAy+FRB+FRD-q16-q24=0 ∴FAy=3q1-P/2 4-19 解:连续梁及起重机受力如图示: 取起重机:∑MH=0 Q1-P3-FNE2=0 ∴FNE=10kN ∑Fy=0 FNE+FNH-Q-P=0 ∴FNH=50kN 取BC段:∑MC=0 FRB6-FNH1=0 ∴FRB=8.33kN 取ACB段:∑MA=0 FRD3+FRB12-FNE5-FNH7=0 ∴FRD=100kN ∑Fx=0 FAx=0 ∑Fy=0 FAy+FRD+FRB-FNE-FNH=0 ∴FAy=48.33kN 4-20解:整体及左半部分受力如图示 取整体:∑MA=0 FByl-Gl/2=0 ∴FBy=1kN ∑MB=0 -FAyl+Gl/2=0 ∴FAy=1kN 取左半部分:∑MC=0 FAxh+G/2l/4-FAyl/2=0 ∴FAx=1.66kN 取整体:∑Fx=0 FAx+FBx=0 ∴FBx=-1.66kN 4-21 解:各部分及整体受力如图示 取吊车梁:∑MD=0 FNE8-P4-Q2=0 ∴FNE=12.5kN ∑Fy=0 FND+FNE-Q-P=0 ∴FND=17.5kN 取T房房架整体: ∑MA=0 FBy12-(G2+FNE)10-(G1+FND)2-F5=0 ∴FBy=77.5kN ∑MB=0 -FAy12-F5+(G1+FND)2+(G2+FNE)2=0 ∴FAy=72.5kN 取T房房架作部分: ∑MC=0 FAy6-FAx10-F5-(G1+FND) 4=0 ∴FAx=7.5kN ∑Fx=0 FCx+F+FAx=0 ∴FCx=-17.5kN ∑Fy=0 FCy+FAy-G1-FND=0 ∴FCy=5kN 取T房房架整体: ∑Fx=0 FAx+F+FBx=0 ∴FBx=-17.5kN 4-22解:整体及部分受力如图示 取整体:∑MC=0 -FAx•l•tg45-G•(2l+5)=0 ∴FAx=-(2+5/l)G ∑MA=0 FCx•ltg45-G(2l+5)=0 ∴FCx=(2+5/l)G 取AE杆:∑ME=0 –FAx•l-FAy•l-G•r=0 ∴FAy=2G ∑Fx=0 FAx+FBx+G=0 ∴FBx=(1+5/l)G ∑Fy=0 FAy+FBy=0 ∴FBy=-2G 取整体:∑Fy=0 FAy+FCy-G=0 ∴FCy=-G 取轮D: ∑Fx=0 FDx-G=0 ∴FDx=G ∑Fy=0 FDy-G=0 ∴FDy=G 4-23 解:整体及部分受力如图示 取整体:∑MB=0 FCy10-W29-P4-W11=0 ∴FCy=48kN ∑Fy=0 FBy+FCy-W1-W2-P=0 ∴FBy=52kN 取AB段:∑MA=0 FBx4+W14+P1-FBy5=0 ∴FBx=20kN ∑Fx=0 FBx+FAx=0 ∴FAx=-20kN ∑Fy=0 FBy+FAy-W1-P=0 ∴FAy=8kN 取整体:∑Fx=0 FBx+FCx=0 ∴FCx=-20kN 4-24 解:系统中1、2、3、4、5杆均为二力杆,整体及部分受力如图: 取整体:∑Fx=0 FAx=0 ∑MA=0 -3P1-6P2-10P3+14FRB=0 ∴FRB=80kN ∑Fy=0 FAy+FRB-P1-P2-P3=0 ∴FAy=90kN 取左半部分:∑MH=0 P21+P14-FAy7+S33=0 ∴S3=117kN 取节点E:∑Fx=0 S3-S1cosα=0 ∴S1=146kN ∑Fy=0 S2+S1sinα=0 ∴S2=-87.6kN 取节点F:∑Fx=0 -S3+S5cosα=0 ∴S5=146kN ∑Fy=0 S4+S5sinα=0 ∴S4=-87.6kN 4-25解:整体及部分受力如图示: 取整体:∑MA=0 FRB4-P(1.5-R)-P(2+R)=0 ∴FRB=21kN ∑Fx=0 FAx-P=0 ∴FAx=24kN ∑Fy=0 FAy+FRB-P=0 ∴FAy=3kN 取ADB杆:∑MD=0 FBy2-FAy2=0 ∴FBy=3kN 取B点建立如图坐标系: ∑Fx=0 (FRB-FBy)sinθ-FBxcosθ=0 且有FBy=FBy,FBx=FBx ∴FBx18tgθ=182/1.5=24kN 4-26 解:整体及部分受力如图示: 取整体:∑MB=0 FAx4+P4.3=0 ∴FAx=-43kN ∑Fx=0 FB+FAx=0 ∴FBx=43kN 取BC杆:∑MC=0 FBx4+P0.3-P0.3-P2.3-FBy4=0 ∴FBy=20kN ∑Fx=0 FBx+FCx-P=0 ∴FCx=-3kN ∑Fy=0 FBy+P+FCy-P=0 ∴FCy=-20kN 取整体: ∑Fy=0 FAy+FBy-P=0 ∴FAy=20kN 4-27 解:受力如图示: 取AB: ∑MA=0 P0.4-SBC0.6=0 ∴SBC=0.667kN 取C点:∑Fx=0 SBCsin60+SCEsin4.8-SCDcos30=0 ∑Fy=0 -SBCcos60+SCEcos4.8-SCDsin30=0 联立后求得:SCE=0.703kN 取OE: ∑MO=0 m0-SCEcos4.80.1=0 ∴m0=70kN 4-28 解:整体及部分受力如图示: 取OA杆,建如图坐标系: ∑MA=0 FOx0.6 sin60+m-Foy0.6cos30=0 ∑Fy=0 Foxcos60+Foycos30=0 联立上三式:Foy=572.4N Fox=-1000N 取整体: ∑MB=0 -Foy(0.6cos30-0.6 sin30ctg60)-P0.75sin60+m=0 ∴P=615.9N ∑Fx=0 Fox+FBx+P=0 ∴FBx=384.1N ∑Fy=0 Foy+FBy=0 ∴FBy=-577.4N 4-29 解:整体及部分受力如图示: 取CD部分:∑MC=0 FND0.6cosα-P0.6sinα=0 ∴FND=Ptgα 取OA部分:∑MA=0 -Fox0.31-m=0 ∴Fox=-m/0.31 取整体:∑MO1=0 Fox0.545-m+P1.33-FND0.6cosα=0 代入后有:-m/0.310.545-m+1.33-Ptgα0.6 cosα=0 ∴m=9.24kN•m 4-30 解:整体及部分受力如图示: 取OA段:∑MA=0 m+Fox0.1=0 ∴Fox=-10m 取OAB段:∑MB=0 m-Foy0.1ctg30=0 ∴Foy=10/3m 取EF及滑块:∑ME=0 FNF0.1cos30+P0.1sin30=0 ∴FNF=-P/3 取整体:∑MD=0 FNF0.1/ cos30+m-Fox0.1-Foy0.1 ctg30=0 ∴m/P=0.1155m 4-31解:取整体:∑MB=0 -FRA4+W14+G13+G22cos30cos30=0 ∴FRA=32.5kN ∑Fx=0 FBx=0 ∑Fy=0 FBy+FRA-W1-W2-G1-G2=0 ∴FBy=27.5kN 取A点:∑Fy=0 FRA+S2cos30-W1=0 ∴S2=-26kN ∑Fx=0 S1+S2sin30=0 ∴S1=13kN 取C点:∑Fx=0 -S2cos60+S4cos30+S3cos60=0 ∑Fy=0 -S2sin60-S3sin60-S4sin30-G1=0 联立上两式得:S3=17.3kN S4=-25kN 取O点:∑Fx=0 -S3cos60-S1+S5cos60+S6=0 ∑Fy=0 S3sin60+S5sin60=0 联立上两式得:S5=-17.3kN S6=30.3kN 取E点:∑Fx=0 -S5cos60-S4cos30+S7cos30=0 ∴S7=-35kN 4-32 解:取整体:∑MA=0 F11.5+F23+F34.5+F46+F57.5-FRB9=0 ∑Fy=0 FRA+FRB-(430+40)=0 ∴FRA=80kN 取A点:∑Fx=0 ∑Fy=0 联立后解得:S1=-197kN S2=180kN 取C点:∑Fx=0          ∑Fy=0          联立后解得:S3=-37kN S4=-160kN 取E点:∑Fx=0           ∑Fy=0            联立后解得:S5=-30kN S6=-160kN 取D点:∑Fx=0            ∑Fy=0               联立后解得:S7=112kN S8=56.3kN 由对称性可知:S9=S8=56.3kN S10=S6=-160kN S11=S5=-30kN S12=S4=-160kN S13=S2=180kN S14=S3=-37kN S15=S1=-197kN 4-33 解:取整体:∑MA=0 FRB4-P12-P23=0 ∴FRB =87.5kN ∑Fy=0 FRA+FRB-P1-P2=0 ∴FRA=62.5kN 取A点:∑Fx=0 S1+S2cos45=0 ∑Fy=0 FRA-S2sin45=0 解得:S1=-62.5kN S2=88.4kN 取C点:∑Fx=0 S4-S2cos45=0 ∑Fy=0 S3+S2sin45=0 解得:S3=-62.5kN S4=62.5kN 取D点:∑Fx=0 S6+S5cos45-S1=0 ∑Fy=0 -S3-S5sin45=0 解得:S5=88.4kN S6=-125kN 取F点:∑Fx=0 S8-S6=0 ∑Fy=0 -P1-S7=0 解得:S7=-100kN S8=-125kN 取E点:∑Fx=0 S9cos45+ S10-S5cos45-S4=0 ∑Fy=0 S7+S5sin45+ S9sin45=0 解得:S9=53kN S10=87.5kN 取G点:∑Fx=0 S12cos45-S10=0 ∑Fy=0 S12sin45+ S11=0 解得:S9=-87.5kN S10=123.7kN 取H点:∑Fx=0 S13-S8-S9sin45=0 ∴S13=-87.5kN 4-34解:取整体:∑MA=0 -FRA6a+G(5a+4a+3a+2a+a)=0 ∴FRA=2.5G ∑Fy=0 FRA +FRB +5G=0 ∴FRB=2.5G 取A点:∑Fx=0 S1+S2cos45=0 ∑Fy=0 S2sin45+FRA=0 解得:S1=2.5G S2=-3.54G 取C点:∑Fx=0 S4-S1=0 ∴S4=2.5G ∑Fy=0 S3-G=0 ∴S3=G 截面Ⅰ-Ⅰ,取左半部分 ∑Fy=0 S5sin45+FRA-3G=0 ∴S5=0.707G ∑MD=0 -FRA4a+G3a+G2a+Ga+S6a=0 ∴S6=4G 第五章习题 5-1 重为W=100N,与水平面间的摩擦因数f=0.3,(a)问当水平力P=10N时,物体受多大的摩擦力,(b)当P=30N时,物体受多大的摩擦力?(c)当P=50N时,物体受多大的摩擦力? 5-2 判断下列图中两物体能否平衡?并问这两个物体所受的摩擦力的大小和方向。已知: (a)物体重W=1000N,拉力P=200N,f=0.3; (b)物体重W=200N,拉力P=500N,f=0.3。 5-3 重为W的物体放在倾角为α的斜面上,物体与斜面间的摩擦角为ρ,且α>ρ。如在物体上作用一力Q,此力与斜面平行。试求能使物体保持平衡的力Qde 最大值和最小值。 5-4 在轴上作用一力偶,其力偶矩为m=-1000N.m,有一半径为r=25cm的制动轮装在轴上,制动轮与制动块间的摩擦因数f=0.25。试问制动时,制动块对制动轮的压力N至少应为多大? 5-5 两物块A和B重叠放在粗糙的水平面上,在上面的物块A的顶上作用一斜向的力P。已知:A重1000N,B重2000N,A与B之间的摩擦因数f1=0.5,B与地面之间的摩擦因数f2=0.2。问当P=600N时,是物块A相对物块B运动呢?还是A、B物块一起相对地面C运动? 5-6 一夹板锤重500N,靠两滚轮与锤杆间的摩擦力提起。已知摩擦因数f=0.4,试问当锤匀速上升时,每边应加正应力(或法向反力)为若干? 5-7 尖劈顶重装置如图所示,重块与尖劈间的摩擦因数f(其他有滚珠处表示光滑)。求: (1)顶住重物所需Q之值(P、α已知); (2)使重物不向上滑动所需Q。 注:在地质上按板块理论,太平洋板块向亚洲大陆斜插下去,在计算太平洋板块所需的力时,可取图示模型。解:取整体 ∑Fy=0 FNA-P=0 ∴FNA=P 当F<Q1时 锲块A向右运动,图(b)力三角形如图(d) 当F>Q2时 锲块A向左运动,图(c)力三角形如图(e) 5-8 图示为轧机的两个压辊,其直径均为d=50cm,两棍间的间隙a=0.5cm,两轧辊转动方向相反,如图上箭头所示。已知烧红的钢板与轧辊之间的摩擦因数为f=0.1,轧制时靠摩擦力将钢板带入轧辊。试问能轧制钢板的最大厚度b是多少? 提示:作用在钢板A、B处的正压力和摩擦力的合力必须水平向右,才能使钢板进入轧辊。 5-9 一凸轮机构,在凸轮上作用一力偶,其力偶矩为m,推杆CD的C点作用一力Q,设推杆与固定滑道之间的摩擦因数f及a和d的尺寸均为已知,试求在图示位置时,欲使推杆不被卡住,滑道长b的尺寸应为若
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:项目工程力学(静力学规范标准答案).doc
链接地址:https://www.taowenge.com/p-2565524.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开