项目工程力学课后标准答案单祖辉主编.doc
.-2-2解:(1) 取节点C为研究对象,画受力图,注意AC、BC都为二力杆, FACFBCCcF2F1xy(2) 列平衡方程:AC与BC两杆均受拉。2-3解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:FFDFADACBFFAFD(2) 由力三角形得2-4解:(1) 研究AB,受力分析并画受力图:AB45oFFBFACDE(2) 画封闭的力三角形:FFBFAdce相似关系:几何尺寸:求出约束反力:2-6解:(1) 取DE为研究对象,DE为二力杆;FD = FEEDFEFD(2) 取ABC为研究对象,受力分析并画受力图;画封闭的力三角形:FFAFDBDAFFDFA3432-7解:(1)取铰链B为研究对象,AB、BC均为二力杆,画受力图和封闭力三角形;BF1FBCBCFABFBCBCFABF145oCF2FCBFCDF2FCBFCD(2) 取铰链C为研究对象,BC、CD均为二力杆,画受力图和封闭力三角形;由前二式可得:2-9 解:(1) 取整体为研究对象,受力分析,AB、AB、AD均为二力杆,画受力图,得到一个空间汇交力系;(2) 列平衡方程:解得:AB、AC杆受拉,AD杆受压。3-1 解:(a) 受力分析,画受力图;A、B处的约束力组成一个力偶;l/2ABlMFAFB列平衡方程:(b) 受力分析,画受力图;A、B处的约束力组成一个力偶;l/3ABlMFAFB列平衡方程: (c) 受力分析,画受力图;A、B处的约束力组成一个力偶;l/2ABlMFBFA列平衡方程:3-2 解:(1) 取BC为研究对象,受力分析,BC为二力杆,画受力图;BFBFCC(2) 取AB为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;ABFBFAM23-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M1=500 Nm,M2 =125 Nm。求两螺栓处的铅垂约束力。图中长度单位为cm。M2M1AB50FBFA解:(1) 取整体为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;(2) 列平衡方程:3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB所受的力。各杆重量不计。OACBM2M130o解:(1) 研究BC杆,受力分析,画受力图:CBM230oFBFC列平衡方程:(2) 研究AB(二力杆),受力如图:ABFBFA可知:(3) 研究OA杆,受力分析,画受力图:OAM1FAFO列平衡方程:3-7 O1和O 2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F1),(F2,F2)如题图所示。如两半径为r=20 cm, F1 =3 N, F2 =5 N,AB=80 cm,不计构件自重,试计算轴承A和B的约束力。BzyxAOF1F2F2F1O1O2FBzFAzFAxFBx解:(1) 取整体为研究对象,受力分析,A、B处x方向和y方向的约束力分别组成力偶,画受力图。(2) 列平衡方程:AB的约束力:3-8 在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸如图。求支座A的约束力。AM2BCDllll解:(1) 取BC为研究对象,受力分析,画受力图;M2BCFBFC(2) 取DAC为研究对象,受力分析,画受力图;ACDFCFAFD画封闭的力三角形;FAFCFD解得广告求助:1. 求5、7 、12-14章答案 就不跪了2. 本人性格 闷骚(腼腆、内敛) 宅,院内w:m=10:400 系内fe:m=0:272(只招男生)所以。 广大男女同胞帮帮忙 我180cm 不脑残 家天津 现在厦门集美上学qq909722754谢谢!ABCD0.80.80.40.50.40.72(b)ABC12q =2(c)M=330oABCD0.80.80.8200.8M=8q=20(e)4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kNm,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。解:(b):(1) 整体受力分析,画出受力图(平面任意力系);ABCD0.80.80.40.50.40.72FBFAxFA yyx(2) 选坐标系Axy,列出平衡方程;约束力的方向如图所示。ABC12q =2M=330oFBFAxFA yyxdx2dxx(c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy,列出平衡方程;约束力的方向如图所示。(e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系);ABCD0.80.80.8200.8M=8q=20FBFAxFA yyx20dxxdx(2) 选坐标系Axy,列出平衡方程;约束力的方向如图所示。4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成a角,求固定端的约束力。ABaCDbABaCGbFAxFA yyxMAG解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系);(2) 选坐标系Bxy,列出平衡方程;约束力的方向如图所示。4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒?WBFE5m1m1mAPCOD解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系);WFE5m1m1mAPCODFFFE(2) 选F点为矩心,列出平衡方程;(3) 不翻倒的条件;ADaCPallhCEBaC4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。ADaCPallhCEBaCQQFBFCyx解:(1):研究整体,受力分析,画出受力图(平面平行力系);(2) 选坐标系Bxy,列出平衡方程;(3) 研究AB,受力分析,画出受力图(平面任意力系);ADaClhBQFBFDFAxFA y(4) 选A点为矩心,列出平衡方程;ABCDFFQ15o45o4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少?ADFQ15o45oFAx解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系);(2) 选x轴为投影轴,列出平衡方程;ABCF15o45oFAFCxFC y(3) 研究杠杆AB,受力分析,画出受力图(平面任意力系);(4) 选C点为矩心,列出平衡方程;ABCDaMqaaa4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kNm,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。CDMqaaFCFDxdxqdxyx解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系);(2) 选坐标系Cxy,列出平衡方程;(3) 研究ABC杆,受力分析,画出受力图(平面平行力系);yxABCaqaFCFAFBxdxqdx(4) 选坐标系Bxy,列出平衡方程;约束力的方向如图所示。ABCD3F=100q=10(a)33411ABCD3F=50q=10(b)3364-17 刚架ABC和刚架CD通过铰链C连接,并与地面通过铰链A、B、D连接,如题4-17图所示,载荷如图,试求刚架的支座约束力(尺寸单位为m,力的单位为 kN,载荷集度单位为 kN/m)。解:(a):(1) 研究CD杆,它是二力杆,又根据D点的约束性质,可知:FC=FD=0;(2) 研究整体,受力分析,画出受力图(平面任意力系);ABCD3F=100q=1033411FA yFAxFByxxdxqdx(3) 选坐标系Axy,列出平衡方程;约束力的方向如图所示。CDF=50q=1033FC yFCxFDdxqdxx(b):(1) 研究CD杆,受力分析,画出受力图(平面任意力系);(2) 选C点为矩心,列出平衡方程;(3) 研究整体,受力分析,画出受力图(平面任意力系);ABCD3F=50q=10336FA yFAxFBFDdxqdxxxy(4) 选坐标系Bxy,列出平衡方程;约束力的方向如图所示。4-18 由杆AB、BC和CE组成的支架和滑轮E支持着物体。物体重12 kN。D处亦为铰链连接,尺寸如题4-18图所示。试求固定铰链支座A和滚动铰链支座B的约束力以及杆BC所受的力。ABW1.5mCDE1.5m2m2mxyAB1.5mCDE1.5m2m2mFA yFAxFBWW解:(1) 研究整体,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy,列出平衡方程;(3) 研究CE杆(带滑轮),受力分析,画出受力图(平面任意力系);CDEWWFD yFDxFCBa(4) 选D点为矩心,列出平衡方程;约束力的方向如图所示。ABW600CDE8003004-19 起重构架如题4-19图所示,尺寸单位为mm。滑轮直径d=200 mm,钢丝绳的倾斜部分平行于杆BE。吊起的载荷W=10 kN,其它重量不计,求固定铰链支座A、B的约束力。ABW600CDE800300FB yFBxFA yFAxWxy解:(1) 研究整体,受力分析,画出受力图(平面任意力系);(2) 选坐标系Bxy,列出平衡方程;(3) 研究ACD杆,受力分析,画出受力图(平面任意力系);ACDFA yFAxFD yFDxFC(4) 选D点为矩心,列出平衡方程;(5) 将FAy代入到前面的平衡方程;约束力的方向如图所示。ABCDEFF45o4-20 AB、AC、DE三杆连接如题4-20图所示。DE杆上有一插销F套在AC杆的导槽内。求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。设AD=DB,DF=FE,BC=DE,所有杆重均不计。解:(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向;(2) 研究DFE杆,受力分析,画出受力图(平面任意力系);DEFFD yFDx45oBFF(3) 分别选F点和B点为矩心,列出平衡方程;(4) 研究ADB杆,受力分析,画出受力图(平面任意力系);ABDFD yFDxFA yFAxFBxy(5) 选坐标系Axy,列出平衡方程;约束力的方向如图所示。ABCDEMxyzabh5-4 一重量W=1000 N的匀质薄板用止推轴承A、径向轴承B和绳索CE支持在水平面上,可以绕水平轴AB转动,今在板上作用一力偶,其力偶矩为M,并设薄板平衡。已知a=3 m,b=4 m,h=5 m,M=2000 Nm,试求绳子的拉力和轴承A、B约束力。ABCDEMxyzabhFA yFAxFAzFBzFB yFCW解:(1) 研究匀质薄板,受力分析,画出受力图(空间任意力系);(2) 选坐标系Axyz,列出平衡方程;约束力的方向如图所示。5-5 作用于半径为120 mm的齿轮上的啮合力F推动皮带绕水平轴AB作匀速转动。已知皮带紧边拉力为200 N,松边拉力为100 N,尺寸如题5-5图所示。试求力F的大小以及轴承A、B的约束力。(尺寸单位mm)。ABCDF100100150160200N100N20oABCDF100100150160200N100N20oFA yFAxFB yFBxxyz解: (1) 研究整体,受力分析,画出受力图(空间任意力系);(2) 选坐标系Axyz,列出平衡方程;约束力的方向如图所示。ABCD11.220o22xyzdFEMzxME20oF5-6 某传动轴以A、B两轴承支承,圆柱直齿轮的节圆直径d=17.3 cm,压力角a=20o。在法兰盘上作用一力偶矩M=1030 Nm的力偶,如轮轴自重和摩擦不计,求传动轴匀速转动时的啮合力F及A、B轴承的约束力(图中尺寸单位为cm)。解: (1) 研究整体,受力分析,画出受力图(空间任意力系);ABCD11.220o22xyzdFEMzxME20oFFB zFAxFA zFBxFA zFB zFAxFBx(2) 选坐标系Axyz,列出平衡方程;约束力的方向如图所示。6-9 已知物体重W=100 N,斜面倾角为30o(题6-9图a,tan30o=0.577),物块与斜面间摩擦因数为fs=0.38,fs=0.37,求物块与斜面间的摩擦力?并问物体在斜面上是静止、下滑还是上滑?如果使物块沿斜面向上运动,求施加于物块并与斜面平行的力F至少应为多大?W(a)aW(b)aF解:(1) 确定摩擦角,并和主动力合力作用线与接触面法向夹角相比较;Waajf(2) 判断物体的状态,求摩擦力:物体下滑,物体与斜面的动滑动摩擦力为(3) 物体有向上滑动趋势,且静滑动摩擦力达到最大时,全约束力与接触面法向夹角等于摩擦角;WaFajfFRWFFRa+jfa(4) 画封闭的力三角形,求力F;F30oABC6-10 重500 N的物体A置于重400 N的物体B上,B又置于水平面C上如题图所示。已知fAB=0.3,fBC=0.2,今在A上作用一与水平面成30o的力F。问当F力逐渐加大时,是A先动呢?还是A、B一起滑动?如果B物体重为200 N,情况又如何?解:(1) 确定A、B和B、C间的摩擦角:(2) 当A、B间的静滑动摩擦力达到最大时,画物体A的受力图和封闭力三角形;F130oAFR1WAjf1WAFR1F130ojf1(3) 当B、C间的静滑动摩擦力达到最大时,画物体A与B的受力图和封闭力三角形;F230oABCWA+BFR2jf230oWA+BFR2jf2F2(4) 比较F1和F2;物体A先滑动;(4) 如果WB=200 N,则WA+B=700 N,再求F2;物体A和B一起滑动;6-11 均质梯长为l,重为P,B端靠在光滑铅直墙上,如图所示,已知梯与地面的静摩擦因数fsA,求平衡时q=?PABCqlPABCqminlDjfjfFRFB解:(1) 研究AB杆,当A点静滑动摩擦力达到最大时,画受力图(A点约束力用全约束力表示);由三力平衡汇交定理可知,P、FB、FR三力汇交在D点;(2) 找出qmin和j f的几何关系;(3) 得出q角的范围;M45o45o6-13 如图所示,欲转动一置于V槽型中的棒料,需作用一力偶,力偶矩M=1500 Ncm,已知棒料重G=400 N,直径D=25 cm。试求棒料与V型槽之间的摩擦因数fs。M45o45oGjfjfFR1FR2GFR1FR2(p/4)-jfO解:(1) 研究棒料,当静滑动摩擦力达到最大时,画受力图(用全约束力表示);(2) 画封闭的力三角形,求全约束力;(3) 取O为矩心,列平衡方程;(4) 求摩擦因数;WFBGED25cm3cm3cmbA6-15 砖夹的宽度为25 cm,曲杆AGB与GCED在G点铰接。砖的重量为W,提砖的合力F作用在砖对称中心线上,尺寸如图所示。如砖夹与砖之间的摩擦因数fs=0.5,试问b应为多大才能把砖夹起(b是G点到砖块上所受正压力作用线的垂直距离)。解:(1) 砖夹与砖之间的摩擦角:(2) 由整体受力分析得:F=W(2) 研究砖,受力分析,画受力图;WjfjfFRFRy(3) 列y方向投影的平衡方程;(4) 研究AGB杆,受力分析,画受力图;FBG3cmbAFRjfFGxFGy(5) 取G为矩心,列平衡方程;x2005050150y(a)yx801201010(b)6-18 试求图示两平面图形形心C的位置。图中尺寸单位为mm。x2005050150yC2CS2解:(a) (1) 将T形分成上、下二个矩形S1、S2,形心为C1、C2;(2) 在图示坐标系中,y轴是图形对称轴,则有:xC=0(3) 二个矩形的面积和形心;(4) T形的形心;C1S1yx801201010C2CS2(b) (1) 将L形分成左、右二个矩形S1、S2,形心为C1、C2;(3) 二个矩形的面积和形心;(4) L形的形心;200100160xy(a)CO1003030604020yxC(b)6-19试求图示平面图形形心位置。尺寸单位为mm。200100160xyCOC1S1C2S2解:(a) (1) 将图形看成大圆S1减去小圆S2,形心为C1和C2;(2) 在图示坐标系中,x轴是图形对称轴,则有:yC=0(3) 二个图形的面积和形心;(4) 图形的形心;1003030604020yxCC1C2S1S2(b) (1) 将图形看成大矩形S1减去小矩形S2,形心为C1和C2;(2) 在图示坐标系中,y轴是图形对称轴,则有:xC=0(3) 二个图形的面积和形心;(4) 图形的形心;8-1 试求图示各杆的轴力,并指出轴力的最大值。F2F(b)FF(a)(d)2kN1kN2kN(c)2kN3kN3kN解:(a)(1) 用截面法求内力,取1-1、2-2截面;FF1122(2) 取1-1截面的左段;FFN111(3) 取2-2截面的右段;22FN2(4) 轴力最大值:(b)(1) 求固定端的约束反力;F2FFR2121(2) 取1-1截面的左段;F11FN1(3) 取2-2截面的右段;FR22FN2(4) 轴力最大值:(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;2kN2kN3kN3kN223311(2) 取1-1截面的左段;2kN11FN1(3) 取2-2截面的左段;2kN3kN2211FN2(4) 取3-3截面的右段;3kN33FN3(5) 轴力最大值:(d)(1) 用截面法求内力,取1-1、2-2截面;2kN1kN1122(2) 取1-1截面的右段;2kN1kN11FN1(2) 取2-2截面的右段;1kN22FN2(5) 轴力最大值:8-2 试画出8-1所示各杆的轴力图。解:(a) FFNx(+)FFNx(+)(-)F(b)FNx(+)(-)3kN1kN2kN(c)FNx(+)(-)1kN1kN(d) 8-5 图示阶梯形圆截面杆,承受轴向载荷F1=50 kN与F2作用,AB与BC段的直径分别为d1=20 mm和d2=30 mm ,如欲使AB与BC段横截面上的正应力相同,试求载荷F2之值。BAF1F2C2121解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同;8-6 题8-5图所示圆截面杆,已知载荷F1=200 kN,F2=100 kN,AB段的直径d1=40 mm,如欲使AB与BC段横截面上的正应力相同,试求BC段的直径。解:(1) 用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F=10 kN作用,杆的横截面面积A=1000 mm2,粘接面的方位角= 450,试计算该截面上的正应力与切应力,并画出应力的方向。FFn粘接面解:(1) 斜截面的应力:(2) 画出斜截面上的应力F8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30 mm与d2=20 mm,两杆材料相同,许用应力=160 MPa。该桁架在节点A处承受铅直方向的载荷F=80 kN作用,试校核桁架的强度。FABC30045012解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;FAyx300450FACFAB(2) 列平衡方程 解得:(2) 分别对两杆进行强度计算;所以桁架的强度足够。8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A处承受铅直方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。已知载荷F=50 kN,钢的许用应力S =160 MPa,木的许用应力W =10 MPa。FABCl45012FABC30045012FABC30045012解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;Ayx450FACFABFFABFACF(2) 运用强度条件,分别对两杆进行强度计算;所以可以确定钢杆的直径为20 mm,木杆的边宽为84 mm。8-16 题8-14所述桁架,试定载荷F的许用值F。解:(1) 由8-14得到AB、AC两杆所受的力与载荷F的关系;(2) 运用强度条件,分别对两杆进行强度计算; 取F=97.1 kN。8-18 图示阶梯形杆AC,F=10 kN,l1= l2=400 mm,A1=2A2=100 mm2,E=200GPa,试计算杆AC的轴向变形l。2FFFl1l2ACB解:(1) 用截面法求AB、BC段的轴力;(2) 分段计算个杆的轴向变形; AC杆缩短。8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A处承受载荷F作用。从试验中测得杆1与杆2的纵向正应变分别为1=4.010-4与2=2.010-4,试确定载荷F及其方位角之值。已知:A1=A2=200 mm2,E1=E2=200 GPa。FABC3003001212解:(1) 对节点A受力分析,求出AB和AC两杆所受的力与的关系;FAyx300FACFAB300 (2) 由胡克定律:代入前式得:8-23 题8-15所述桁架,若杆AB与AC的横截面面积分别为A1=400 mm2与A2=8000 mm2,杆AB的长度l=1.5 m,钢与木的弹性模量分别为ES=200 GPa、EW=10 GPa。试计算节点A的水平与铅直位移。解:(1) 计算两杆的变形;1杆伸长,2杆缩短。(2) 画出节点A的协调位置并计算其位移;AAA2450l1A1l2FAyx450FACFABFAyx450FACFAB水平位移:铅直位移:8-26 图示两端固定等截面直杆,横截面的面积为A,承受轴向载荷F作用,试计算杆内横截面上的最大拉应力与最大压应力。l/3FD(b)FABCl/3l/3解:(1) 对直杆进行受力分析;FBFAFDFABC列平衡方程:(2) 用截面法求出AB、BC、CD段的轴力;(3) 用变形协调条件,列出补充方程;代入胡克定律;求出约束反力:(4) 最大拉应力和最大压应力; 8-27 图示结构,梁BD为刚体,杆1与杆2用同一种材料制成,横截面面积均为A=300 mm2,许用应力=160 MPa,载荷F=50 kN,试校核杆的强度。FDBCla12a解:(1) 对BD杆进行受力分析,列平衡方程;FDBCFN2FN1FBxFBy (2) 由变形协调关系,列补充方程;代之胡克定理,可得;解联立方程得:(3) 强度计算;所以杆的强度足够。8-30 图示桁架,杆1、杆2与个杆3分别用铸铁、铜与钢制成,许用应力分别为1 =80 MPa,2 =60 MPa,3 =120 MPa,弹性模量分别为E1=160 GPa,E2=100 GPa,E3=200 GPa。若载荷F=160 kN,A1=A2 =2A3,试确定各杆的横截面面积。F1000C300123FCFN1FN3FN2解:(1) 对节点C进行受力分析,假设三杆均受拉; FCFN1FN3FN2画受力图;FCFN1FN3FN2FCFN1FN3FN2 FCFN1FN3FN2列平衡方程;(2) 根据胡克定律,列出各杆的绝对变形; (3) 由变形协调关系,列补充方程;C1CCC2300l1C3l2l3 简化后得: 联立平衡方程可得:1杆实际受压,2杆和3杆受拉。(4) 强度计算;综合以上条件,可得8-31 图示木榫接头,F=50 kN,试求接头的剪切与挤压应力。FF10010010040FF100解:(1) 剪切实用计算公式:(2) 挤压实用计算公式:8-32 图示摇臂,承受载荷F1与F2作用,试确定轴销B的直径d。已知载荷F1=50 kN,F2=35.4 kN,许用切应力 =100 MPa,许用挤压应力bs =240 MPa。450450BACF1F28040DDFBD-Dd6610解:(1) 对摇臂ABC进行受力分析,由三力平衡汇交定理可求固定铰支座B的约束反力; (2) 考虑轴销B的剪切强度;考虑轴销B的挤压强度;(3) 综合轴销的剪切和挤压强度,取8-33 图示接头,承受轴向载荷F作用,试校核接头的强度。已知:载荷F=80 kN,板宽b=80 mm,板厚=10 mm,铆钉直径d=16 mm,许用应力=160 MPa,许用切应力 =120 MPa,许用挤压应力bs =340 MPa。板件与铆钉的材料相等。FFFFbd
收藏
编号:2565598
类型:共享资源
大小:2.18MB
格式:DOC
上传时间:2020-04-20
12
金币
- 关 键 词:
-
项目
工程力学
课后
标准答案
单祖辉
主编
- 资源描述:
-
.-
2-2解:(1) 取节点C为研究对象,画受力图,注意AC、BC都为二力杆,
FAC
FBC
C c
F2
F1
x
y
(2) 列平衡方程:
AC与BC两杆均受拉。
2-3解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:
F
FD
FA
D
A
C
B
F
FA
FD
(2) 由力三角形得
2-4解:(1) 研究AB,受力分析并画受力图:
A
B
45o
F
FB
FA
C
D
E
α
(2) 画封闭的力三角形:
F
FB
FA
d
c
e
相似关系:
几何尺寸:
求出约束反力:
2-6解:(1) 取DE为研究对象,DE为二力杆;FD = FE
E
D
FE
FD
(2) 取ABC为研究对象,受力分析并画受力图;画封闭的力三角形:
F
FA
F’D
B
D
A
F
F’D
FA
3
4
3
2-7解:(1)取铰链B为研究对象,AB、BC均为二力杆,画受力图和封闭力三角形;
B
F1
FBCBC
FAB
FBCBC
FAB
F1
45o
C
F2
FCB
FCD
F2
FCB
FCD
(2) 取铰链C为研究对象,BC、CD均为二力杆,画受力图和封闭力三角形;
由前二式可得:
2-9 解:(1) 取整体为研究对象,受力分析,AB、AB、AD均为二力杆,画受力图,得到一个空间汇交力系;
(2) 列平衡方程:
解得:
AB、AC杆受拉,AD杆受压。
3-1 解:(a) 受力分析,画受力图;A、B处的约束力组成一个力偶;
l/2
A
B
l
M
FA
FB
列平衡方程:
(b) 受力分析,画受力图;A、B处的约束力组成一个力偶;
l/3
A
B
l
M
FA
FB
列平衡方程:
(c) 受力分析,画受力图;A、B处的约束力组成一个力偶;
l/2
A
B
l
M
FB
FA
θ
列平衡方程:
3-2 解:(1) 取BC为研究对象,受力分析,BC为二力杆,画受力图;
B
FB
FC
C
(2) 取AB为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;
A
B
F’B
FA
M2
3-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M1=500 Nm,M2 =125 Nm。求两螺栓处的铅垂约束力。图中长度单位为cm。
M2
M1
A
B
50
FB
FA
解:(1) 取整体为研究对象,受力分析,A、B的约束力组成一个力偶,画受力图;
(2) 列平衡方程:
3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB所受的力。各杆重量不计。
O
A
C
B
M2
M1
30o
解:(1) 研究BC杆,受力分析,画受力图:
C
B
M2
30o
FB
FC
列平衡方程:
(2) 研究AB(二力杆),受力如图:
A
B
F’B
F’A
可知:
(3) 研究OA杆,受力分析,画受力图:
O
A
M1
FA
FO
列平衡方程:
3-7 O1和O 2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。如两半径为r=20 cm, F1 =3 N, F2 =5 N,AB=80 cm,不计构件自重,试计算轴承A和B的约束力。
B
z
y
x
A
O
F1
F2
F’2
F’1
O1
O2
FBz
FAz
FAx
FBx
解:(1) 取整体为研究对象,受力分析,A、B处x方向和y方向的约束力分别组成力偶,画受力图。
(2) 列平衡方程:
AB的约束力:
3-8 在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸如图。求支座A的约束力。
A
M2
B
C
D
l
l
l
l
解:(1) 取BC为研究对象,受力分析,画受力图;
M2
B
C
FB
FC
(2) 取DAC为研究对象,受力分析,画受力图;
A
C
D
F’C
FA
FD
画封闭的力三角形;
FA
F’C
FD
解得
广告
求助:
1. 求5、7 、12---14章答案 就不跪了
2. 本人性格 闷骚(腼腆、内敛) 宅,院内w:m=10:400 系内fe:m=0:272(只招男生)所以。。。。 广大男女同胞帮帮忙 我180cm 不脑残 家天津 现在厦门集美上学qq909722754谢谢!!!!!!!!!!!!
A
B
C
D
0.8
0.8
0.4
0.5
0.4
0.7
2
(b)
A
B
C
1
2
q =2
(c)
M=3
30o
A
B
C
D
0.8
0.8
0.8
20
0.8
M=8
q=20
(e)
4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kNm,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。
解:
(b):(1) 整体受力分析,画出受力图(平面任意力系);
A
B
C
D
0.8
0.8
0.4
0.5
0.4
0.7
2
FB
FAx
FA y
y
x
(2) 选坐标系Axy,列出平衡方程;
约束力的方向如图所示。
A
B
C
1
2
q =2
M=3
30o
FB
FAx
FA y
y
x
dx
2dx
x
(c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系);
(2) 选坐标系Axy,列出平衡方程;
约束力的方向如图所示。
(e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系);
A
B
C
D
0.8
0.8
0.8
20
0.8
M=8
q=20
FB
FAx
FA y
y
x
20dx
x
dx
(2) 选坐标系Axy,列出平衡方程;
约束力的方向如图所示。
4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成a角,求固定端的约束力。
A
B
aC
D
b
A
B
aC
G
b
FAx
FA y
y
x
MA
G
解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系);
(2) 选坐标系Bxy,列出平衡方程;
约束力的方向如图所示。
4-7 练钢炉的送料机由跑车A和可移动的桥B组成。跑车可沿桥上的轨道运动,两轮间距离为2 m,跑车与操作架、平臂OC以及料斗C相连,料斗每次装载物料重W=15 kN,平臂长OC=5 m。设跑车A,操作架D和所有附件总重为P。作用于操作架的轴线,问P至少应多大才能使料斗在满载时跑车不致翻倒?
W
B
F
E
5m
1m
1m
A
P
C
O
D
解:(1) 研究跑车与操作架、平臂OC以及料斗C,受力分析,画出受力图(平面平行力系);
W
F
E
5m
1m
1m
A
P
C
O
D
FF
FE
(2) 选F点为矩心,列出平衡方程;
(3) 不翻倒的条件;
A
D
aC
P
a
l
l
h
C
E
B
aC
4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。
A
D
aC
P
a
l
l
h
C
E
B
aC
Q
Q
FB
FC
y
x
解:(1):研究整体,受力分析,画出受力图(平面平行力系);
(2) 选坐标系Bxy,列出平衡方程;
(3) 研究AB,受力分析,画出受力图(平面任意力系);
A
D
aC
l
h
B
Q
FB
FD
FAx
FA y
(4) 选A点为矩心,列出平衡方程;
A
B
C
D
F
FQ
15o
45o
4-15 在齿条送料机构中杠杆AB=500 mm,AC=100 mm,齿条受到水平阻力FQ的作用。已知Q=5000 N,各零件自重不计,试求移动齿条时在点B的作用力F是多少?
A
D
FQ
15o
45o
FA
x
解:(1) 研究齿条和插瓜(二力杆),受力分析,画出受力图(平面任意力系);
(2) 选x轴为投影轴,列出平衡方程;
A
B
C
F
15o
45o
F’A
FCx
FC y
(3) 研究杠杆AB,受力分析,画出受力图(平面任意力系);
(4) 选C点为矩心,列出平衡方程;
A
B
C
D
a
M
q
a
a
a
4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kNm,a=2 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。
C
D
M
q
a
a
FC
FD
x
dx
qdx
y
x
解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系);
(2) 选坐标系Cxy,列出平衡方程;
(3) 研究ABC杆,受力分析,画出受力图(平面平行力系);
y
x
A
B
C
a
q
a
F’C
FA
FB
x
dx
qdx
(4) 选坐标系Bxy,列出平衡方程;
约束力的方向如图所示。
A
B
C
D
3
F=100
q=10
(a)
3
3
4
1
1
A
B
C
D
3
F=50
q=10
(b)
3
3
6
4-17 刚架ABC和刚架CD通过铰链C连接,并与地面通过铰链A、B、D连接,如题4-17图所示,载荷如图,试求刚架的支座约束力(尺寸单位为m,力的单位为 kN,载荷集度单位为 kN/m)。
解:
(a):(1) 研究CD杆,它是二力杆,又根据D点的约束性质,可知:FC=FD=0;
(2) 研究整体,受力分析,画出受力图(平面任意力系);
A
B
C
D
3
F=100
q=10
3
3
4
1
1
FA y
FAx
FB
y
x
x
dx
qdx
(3) 选坐标系Axy,列出平衡方程;
约束力的方向如图所示。
C
D
F=50
q=10
3
3
FC y
FCx
FD
dx
qdx
x
(b):(1) 研究CD杆,受力分析,画出受力图(平面任意力系);
(2) 选C点为矩心,列出平衡方程;
(3) 研究整体,受力分析,画出受力图(平面任意力系);
A
B
C
D
3
F=50
q=10
3
3
6
FA y
FAx
FB
FD
dx
qdx
x
x
y
(4) 选坐标系Bxy,列出平衡方程;
约束力的方向如图所示。
4-18 由杆AB、BC和CE组成的支架和滑轮E支持着物体。物体重12 kN。D处亦为铰链连接,尺寸如题4-18图所示。试求固定铰链支座A和滚动铰链支座B的约束力以及杆BC所受的力。
A
B
W
1.5m
C
D
E
1.5m
2m
2m
x
y
A
B
1.5m
C
D
E
1.5m
2m
2m
FA y
FAx
FB
W
W
解:(1) 研究整体,受力分析,画出受力图(平面任意力系);
(2) 选坐标系Axy,列出平衡方程;
(3) 研究CE杆(带滑轮),受力分析,画出受力图(平面任意力系);
C
D
E
W
W
FD y
FDx
FCB
a
(4) 选D点为矩心,列出平衡方程;
约束力的方向如图所示。
A
B
W
600
C
D
E
800
300
4-19 起重构架如题4-19图所示,尺寸单位为mm。滑轮直径d=200 mm,钢丝绳的倾斜部分平行于杆BE。吊起的载荷W=10 kN,其它重量不计,求固定铰链支座A、B的约束力。
A
B
W
600
C
D
E
800
300
FB y
FBx
FA y
FAx
W
x
y
解:(1) 研究整体,受力分析,画出受力图(平面任意力系);
(2) 选坐标系Bxy,列出平衡方程;
(3) 研究ACD杆,受力分析,画出受力图(平面任意力系);
A
C
D
FA y
FAx
FD y
FDx
FC
(4) 选D点为矩心,列出平衡方程;
(5) 将FAy代入到前面的平衡方程;
约束力的方向如图所示。
A
B
C
D
E
F
F
45o
4-20 AB、AC、DE三杆连接如题4-20图所示。DE杆上有一插销F套在AC杆的导槽内。求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。设AD=DB,DF=FE,BC=DE,所有杆重均不计。
解:(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向;
(2) 研究DFE杆,受力分析,画出受力图(平面任意力系);
D
E
F
FD y
FDx
45o
B
FF
(3) 分别选F点和B点为矩心,列出平衡方程;
(4) 研究ADB杆,受力分析,画出受力图(平面任意力系);
A
B
D
F’D y
F’Dx
FA y
FAx
FB
x
y
(5) 选坐标系Axy,列出平衡方程;
约束力的方向如图所示。
A
B
C
D
E
M
x
y
z
a
b
h
5-4 一重量W=1000 N的匀质薄板用止推轴承A、径向轴承B和绳索CE支持在水平面上,可以绕水平轴AB转动,今在板上作用一力偶,其力偶矩为M,并设薄板平衡。已知a=3 m,b=4 m,h=5 m,M=2000 Nm,试求绳子的拉力和轴承A、B约束力。
A
B
C
D
E
M
x
y
z
a
b
h
FA y
FAx
FAz
FBz
FB y
FC
W
解:(1) 研究匀质薄板,受力分析,画出受力图(空间任意力系);
(2) 选坐标系Axyz,列出平衡方程;
约束力的方向如图所示。
5-5 作用于半径为120 mm的齿轮上的啮合力F推动皮带绕水平轴AB作匀速转动。已知皮带紧边拉力为200 N,松边拉力为100 N,尺寸如题5-5图所示。试求力F的大小以及轴承A、B的约束力。(尺寸单位mm)。
A
B
C
D
F
100
100
150
160
200N
100N
20o
A
B
C
D
F
100
100
150
160
200N
100N
20o
FA y
FAx
FB y
FBx
x
y
z
解: (1) 研究整体,受力分析,画出受力图(空间任意力系);
(2) 选坐标系Axyz,列出平衡方程;
约束力的方向如图所示。
A
B
C
D
11.2
20o
22
x
y
z
d
F
E
M
z
x
M
E
20o
F
5-6 某传动轴以A、B两轴承支承,圆柱直齿轮的节圆直径d=17.3 cm,压力角a=20o。在法兰盘上作用一力偶矩M=1030 Nm的力偶,如轮轴自重和摩擦不计,求传动轴匀速转动时的啮合力F及A、B轴承的约束力(图中尺寸单位为cm)。
解: (1) 研究整体,受力分析,画出受力图(空间任意力系);
A
B
C
D
11.2
20o
22
x
y
z
d
F
E
M
z
x
M
E
20o
F
FB z
FAx
FA z
FBx
FA z
FB z
FAx
FBx
(2) 选坐标系Axyz,列出平衡方程;
约束力的方向如图所示。
6-9 已知物体重W=100 N,斜面倾角为30o(题6-9图a,tan30o=0.577),物块与斜面间摩擦因数为fs=0.38,f’s=0.37,求物块与斜面间的摩擦力?并问物体在斜面上是静止、下滑还是上滑?如果使物块沿斜面向上运动,求施加于物块并与斜面平行的力F至少应为多大?
W
(a)
a
W
(b)
a
F
解:(1) 确定摩擦角,并和主动力合力作用线与接触面法向夹角相比较;
W
a
a
jf
(2) 判断物体的状态,求摩擦力:物体下滑,物体与斜面的动滑动摩擦力为
(3) 物体有向上滑动趋势,且静滑动摩擦力达到最大时,全约束力与接触面法向夹角等于摩擦角;
W
a
F
a
jf
FR
W
F
FR
a+jf
a
(4) 画封闭的力三角形,求力F;
F
30o
A
B
C
6-10 重500 N的物体A置于重400 N的物体B上,B又置于水平面C上如题图所示。已知fAB=0.3,fBC=0.2,今在A上作用一与水平面成30o的力F。问当F力逐渐加大时,是A先动呢?还是A、B一起滑动?如果B物体重为200 N,情况又如何?
解:(1) 确定A、B和B、C间的摩擦角:
(2) 当A、B间的静滑动摩擦力达到最大时,画物体A的受力图和封闭力三角形;
F1
30o
A
FR1
WA
jf1
WA
FR1
F1
30o
jf1
(3) 当B、C间的静滑动摩擦力达到最大时,画物体A与B的受力图和封闭力三角形;
F2
30o
A
B
C
WA+B
FR2
jf2
30o
WA+B
FR2
jf2
F2
(4) 比较F1和F2;
物体A先滑动;
(4) 如果WB=200 N,则WA+B=700 N,再求F2;
物体A和B一起滑动;
6-11 均质梯长为l,重为P,B端靠在光滑铅直墙上,如图所示,已知梯与地面的静摩擦因数fsA,求平衡时q=?
P
A
B
C
q
l
P
A
B
C
qmin
l
D
jf
jf
FR
FB
解:(1) 研究AB杆,当A点静滑动摩擦力达到最大时,画受力图(A点约束力用全约束力表示);
由三力平衡汇交定理可知,P、FB、FR三力汇交在D点;
(2) 找出qmin和j f的几何关系;
(3) 得出q角的范围;
M
45o
45o
6-13 如图所示,欲转动一置于V槽型中的棒料,需作用一力偶,力偶矩M=1500 Ncm,已知棒料重G=400 N,直径D=25 cm。试求棒料与V型槽之间的摩擦因数fs。
M
45o
45o
G
jf
jf
FR1
FR2
G
FR1
FR2
(p/4)-jf
O
解:(1) 研究棒料,当静滑动摩擦力达到最大时,画受力图(用全约束力表示);
(2) 画封闭的力三角形,求全约束力;
(3) 取O为矩心,列平衡方程;
(4) 求摩擦因数;
W
F
B
G
E
D
25cm
3cm
3cm
b
A
6-15 砖夹的宽度为25 cm,曲杆AGB与GCED在G点铰接。砖的重量为W,提砖的合力F作用在砖对称中心线上,尺寸如图所示。如砖夹与砖之间的摩擦因数fs=0.5,试问b应为多大才能把砖夹起(b是G点到砖块上所受正压力作用线的垂直距离)。
解:(1) 砖夹与砖之间的摩擦角:
(2) 由整体受力分析得:F=W
(2) 研究砖,受力分析,画受力图;
W
jf
jf
FR
FR
y
(3) 列y方向投影的平衡方程;
(4) 研究AGB杆,受力分析,画受力图;
F
B
G
3cm
b
A
F’R
jf
FGx
FGy
(5) 取G为矩心,列平衡方程;
x
200
50
50
150
y
(a)
y
x
80
120
10
10
(b)
6-18 试求图示两平面图形形心C的位置。图中尺寸单位为mm。
x
200
50
50
150
y
C2
C
S2
解:(a) (1) 将T形分成上、下二个矩形S1、S2,形心为C1、C2;
(2) 在图示坐标系中,y轴是图形对称轴,则有:xC=0
(3) 二个矩形的面积和形心;
(4) T形的形心;
C1
S1
y
x
80
120
10
10
C2
C
S2
(b) (1) 将L形分成左、右二个矩形S1、S2,形心为C1、C2;
(3) 二个矩形的面积和形心;
(4) L形的形心;
200
100
160
x
y
(a)
C
O
100
30
30
60
40
20
y
x
C
(b)
6-19试求图示平面图形形心位置。尺寸单位为mm。
200
100
160
x
y
C
O
C1
S1
C2
S2
解:(a) (1) 将图形看成大圆S1减去小圆S2,形心为C1和C2;
(2) 在图示坐标系中,x轴是图形对称轴,则有:yC=0
(3) 二个图形的面积和形心;
(4) 图形的形心;
100
30
30
60
40
20
y
x
C
C1
C2
S1
S2
(b) (1) 将图形看成大矩形S1减去小矩形S2,形心为C1和C2;
(2) 在图示坐标系中,y轴是图形对称轴,则有:xC=0
(3) 二个图形的面积和形心;
(4) 图形的形心;
8-1 试求图示各杆的轴力,并指出轴力的最大值。
F
2F
(b)
F
F
(a)
(d)
2kN
1kN
2kN
(c)
2kN
3kN
3kN
解:(a)
(1) 用截面法求内力,取1-1、2-2截面;
F
F
1
1
2
2
(2) 取1-1截面的左段;
F
FN1
1
1
(3) 取2-2截面的右段;
2
2
FN2
(4) 轴力最大值:
(b)
(1) 求固定端的约束反力;
F
2F
FR
2
1
2
1
(2) 取1-1截面的左段;
F
1
1
FN1
(3) 取2-2截面的右段;
FR
2
2
FN2
(4) 轴力最大值:
(c)
(1) 用截面法求内力,取1-1、2-2、3-3截面;
2kN
2kN
3kN
3kN
2
2
3
3
1
1
(2) 取1-1截面的左段;
2kN
1
1
FN1
(3) 取2-2截面的左段;
2kN
3kN
2
2
1
1
FN2
(4) 取3-3截面的右段;
3kN
3
3
FN3
(5) 轴力最大值:
(d)
(1) 用截面法求内力,取1-1、2-2截面;
2kN
1kN
1
1
2
2
(2) 取1-1截面的右段;
2kN
1kN
1
1
FN1
(2) 取2-2截面的右段;
1kN
2
2
FN2
(5) 轴力最大值:
8-2 试画出8-1所示各杆的轴力图。
解:(a)
F
FN
x
(+)
F
FN
x
(+)
(-)
F
(b)
FN
x
(+)
(-)
3kN
1kN
2kN
(c)
FN
x
(+)
(-)
1kN
1kN
(d)
8-5 图示阶梯形圆截面杆,承受轴向载荷F1=50 kN与F2作用,AB与BC段的直径分别为d1=20 mm和d2=30 mm ,如欲使AB与BC段横截面上的正应力相同,试求载荷F2之值。
B
A
F1
F2
C
2
1
2
1
解:(1) 用截面法求出1-1、2-2截面的轴力;
(2) 求1-1、2-2截面的正应力,利用正应力相同;
8-6 题8-5图所示圆截面杆,已知载荷F1=200 kN,F2=100 kN,AB段的直径d1=40 mm,如欲使AB与BC段横截面上的正应力相同,试求BC段的直径。
解:(1) 用截面法求出1-1、2-2截面的轴力;
(2) 求1-1、2-2截面的正应力,利用正应力相同;
8-7 图示木杆,承受轴向载荷F=10 kN作用,杆的横截面面积A=1000 mm2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
F
F
θ
n
粘接面
解:(1) 斜截面的应力:
(2) 画出斜截面上的应力
F
σθ
τθ
8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30 mm与d2=20 mm,两杆材料相同,许用应力[σ]=160 MPa。该桁架在节点A处承受铅直方向的载荷F=80 kN作用,试校核桁架的强度。
F
A
B
C
300
450
1
2
解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;
F
A
y
x
300
450
FAC
FAB
(2) 列平衡方程
解得:
(2) 分别对两杆进行强度计算;
所以桁架的强度足够。
8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A处承受铅直方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。已知载荷F=50 kN,钢的许用应力[σS] =160 MPa,木的许用应力[σW] =10 MPa。
F
A
B
C
l
450
1
2
F
A
B
C
300
450
1
2
F
A
B
C
300
450
1
2
解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;
A
y
x
450
FAC
FAB
F
FAB
FAC
F
(2) 运用强度条件,分别对两杆进行强度计算;
所以可以确定钢杆的直径为20 mm,木杆的边宽为84 mm。
8-16 题8-14所述桁架,试定载荷F的许用值[F]。
解:(1) 由8-14得到AB、AC两杆所受的力与载荷F的关系;
(2) 运用强度条件,分别对两杆进行强度计算;
取[F]=97.1 kN。
8-18 图示阶梯形杆AC,F=10 kN,l1= l2=400 mm,A1=2A2=100 mm2,E=200GPa,试计算杆AC的轴向变形△l。
2F
F
F
l1
l2
A
C
B
解:(1) 用截面法求AB、BC段的轴力;
(2) 分段计算个杆的轴向变形;
AC杆缩短。
8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A处承受载荷F作用。从试验中测得杆1与杆2的纵向正应变分别为ε1=4.010-4与ε2=2.010-4,试确定载荷F及其方位角θ之值。已知:A1=A2=200 mm2,E1=E2=200 GPa。
F
A
B
C
300
300
1
2
θ
ε1
ε2
解:(1) 对节点A受力分析,求出AB和AC两杆所受的力与θ的关系;
F
A
y
x
300
θ
FAC
FAB
300
(2) 由胡克定律:
代入前式得:
8-23 题8-15所述桁架,若杆AB与AC的横截面面积分别为A1=400 mm2与A2=8000 mm2,杆AB的长度l=1.5 m,钢与木的弹性模量分别为ES=200 GPa、EW=10 GPa。试计算节点A的水平与铅直位移。
解:(1) 计算两杆的变形;
1杆伸长,2杆缩短。
(2) 画出节点A的协调位置并计算其位移;
A’
A
A2
450
△l1
A1
△l2
F
A
y
x
450
FAC
FAB
F
A
y
x
450
FAC
FAB
水平位移:
铅直位移:
8-26 图示两端固定等截面直杆,横截面的面积为A,承受轴向载荷F作用,试计算杆内横截面上的最大拉应力与最大压应力。
l/3
F
D
(b)
F
A
B
C
l/3
l/3
解:(1) 对直杆进行受力分析;
FB
FA
F
D
F
A
B
C
列平衡方程:
(2) 用截面法求出AB、BC、CD段的轴力;
(3) 用变形协调条件,列出补充方程;
代入胡克定律;
求出约束反力:
(4) 最大拉应力和最大压应力;
8-27 图示结构,梁BD为刚体,杆1与杆2用同一种材料制成,横截面面积均为A=300 mm2,许用应力[σ]=160 MPa,载荷F=50 kN,试校核杆的强度。
F
D
B
C
l
a
1
2
a
解:(1) 对BD杆进行受力分析,列平衡方程;
F
D
B
C
FN2
FN1
FBx
FBy
(2) 由变形协调关系,列补充方程;
代之胡克定理,可得;
解联立方程得:
(3) 强度计算;
所以杆的强度足够。
8-30 图示桁架,杆1、杆2与个杆3分别用铸铁、铜与钢制成,许用应力分别为[σ1] =80 MPa,[σ2] =60 MPa,[σ3] =120 MPa,弹性模量分别为E1=160 GPa,E2=100 GPa,E3=200 GPa。若载荷F=160 kN,A1=A2 =2A3,试确定各杆的横截面面积。
F
1000
C
300
1
2
3
F
C
FN1
FN3
FN2
解:(1) 对节点C进行受力分析,假设三杆均受拉; F
C
FN1
FN3
FN2
画受力图;
F
C
FN1
FN3
FN2
F
C
FN1
FN3
FN2
F
C
FN1
FN3
FN2
列平衡方程;
(2) 根据胡克定律,列出各杆的绝对变形;
(3) 由变形协调关系,列补充方程;
C1
C
C’
C2
300
△l1
C3
△l2
△l3
简化后得:
联立平衡方程可得:
1杆实际受压,2杆和3杆受拉。
(4) 强度计算;
综合以上条件,可得
8-31 图示木榫接头,F=50 kN,试求接头的剪切与挤压应力。
F
F
100
100
100
40
F
F
100
解:(1) 剪切实用计算公式:
(2) 挤压实用计算公式:
8-32 图示摇臂,承受载荷F1与F2作用,试确定轴销B的直径d。已知载荷F1=50 kN,F2=35.4 kN,许用切应力[τ] =100 MPa,许用挤压应力[σbs] =240 MPa。
450
450
B
A
C
F1
F2
80
40
D
D
FB
D-D
d
6
6
10
解:(1) 对摇臂ABC进行受力分析,由三力平衡汇交定理可求固定铰支座B的约束反力;
(2) 考虑轴销B的剪切强度;
考虑轴销B的挤压强度;
(3) 综合轴销的剪切和挤压强度,取
8-33 图示接头,承受轴向载荷F作用,试校核接头的强度。已知:载荷F=80 kN,板宽b=80 mm,板厚δ=10 mm,铆钉直径d=16 mm,许用应力[σ]=160 MPa,许用切应力[τ] =120 MPa,许用挤压应力[σbs] =340 MPa。板件与铆钉的材料相等。
F
F
F
F
b
δ
δ
d
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。