2020年中考数学基础题专练:21以平行四边形为背景的证明与计算.doc
《2020年中考数学基础题专练:21以平行四边形为背景的证明与计算.doc》由会员分享,可在线阅读,更多相关《2020年中考数学基础题专练:21以平行四边形为背景的证明与计算.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题21 以平行四边形为背景的证明与计算考点分析【例1】(2019重庆中考真题)在中,BE平分交AD于点E(1)如图1,若,求的面积;(2)如图2,过点A作,交DC的延长线于点F,分别交BE,BC于点G,H,且求证:【答案】(1);(2)证明见解析.【解析】(1)解:作于O,如图1所示:四边形ABCD是平行四边形,BE平分,的面积;(2)证明:作交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:,在和中,在和中,【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、线段垂直平分线的性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题
2、的关键【例2】 (2019山东初二期末)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE(感知)如图,过点A作AFBE交BC于点F易证ABFBCE(不需要证明)(探究)如图,取BE的中点M,过点M作FGBE交BC于点F,交AD于点G(1)求证:BE=FG(2)连结CM,若CM=1,则FG的长为 (应用)如图,取BE的中点M,连结CM过点C作CGBE交AD于点G,连结EG、MG若CM=3,则四边形GMCE的面积为 【答案】(1)证明见解析;(2)2,9.【解析】感知:四边形ABCD是正方形,AB=BC,BCE=ABC=90,ABE+CBE=90,AFBE,ABE+BAF=9
3、0,BAF=CBE,在ABF和BCE中,ABFBCE(ASA);探究:(1)如图,过点G作GPBC于P,四边形ABCD是正方形,AB=BC,A=ABC=90,四边形ABPG是矩形,PG=AB,PG=BC,同感知的方法得,PGF=CBE,在PGF和CBE中,PGFCBE(ASA),BE=FG;(2)由(1)知,FG=BE,连接CM,BCE=90,点M是BE的中点,BE=2CM=2,FG=2,故答案为:2应用:同探究(2)得,BE=2ME=2CM=6,ME=3,同探究(1)得,CG=BE=6,BECG,S四边形CEGM=CGME=63=9,故答案为:9【点睛】本题是四边形综合题,主要考查了正方形的
4、性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键考点集训1(2019四川初三期末)在矩形ABCD中,AB=12,P是边AB上一点,把PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BECG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:AEBDEC;(2)如图2,求证:BP=BF;当AD=25,且AEDE时,求cosPCB的值;当BP=9时,求BEEF的值【答案】(1)证明见解析;(2)证明见解析;108. 【解析】(1)在矩形ABCD中,A=D=90,AB=DC,E是AD中点,AE=DE
5、,在ABE和DCE中,ABEDCE(SAS);(2)在矩形ABCD,ABC=90,BPC沿PC折叠得到GPC,PGC=PBC=90,BPC=GPC,BECG,BEPG,GPF=PFB,BPF=BFP,BP=BF;当AD=25时,BEC=90,AEB+CED=90,AEB+ABE=90,CED=ABE,A=D=90,ABEDEC,设AE=x,DE=25x,x=9或x=16,AEDE,AE=9,DE=16,CE=20,BE=15,由折叠得,BP=PG,BP=BF=PG,BEPG,ECFGCP,设BP=BF=PG=y,y=,BP=,在RtPBC中,PC=,cosPCB=;如图,连接FG,GEF=BA
6、E=90,BFPG,BF=PG=BP,BPGF是菱形,BPGF,GFE=ABE,GEFEAB,BEEF=ABGF=129=108【点睛】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键2(2019甘肃中考真题)如图,在正方形中,点是的中点,连接,过点作交于点,交于点(1)证明:;(2)连接,证明:【答案】(1)见解析;(2)见解析.【解析】证明:(1)四边形是正方形,又,(2)如图所示,延长交的延长线于,是的中点,又,即是的中点,又,中,【点睛】本题主要考查了正方形的性质以及全等三角形的判定与性质,在应用
7、全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形3(2019黑龙江初三)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长【答案】(1)证明见解析;(2)【解析】(1)证明:四边形ABCD是矩形,O是BD的中点,A=90,AD=BC=4,ABDC,OB=OD,OBE=ODF,在BOE和DOF中, BOEDOF(ASA),EO=FO,四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,BDEF,设BE=x,则DE=x,AE=6-x
8、,在RtADE中,DE2=AD2+AE2,x2=42+(6-x)2,解得:x= ,BD= =2,OB=BD=,BDEF,EO=,EF=2EO=点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键 4(2019四川中考真题)如图,在四边形中,延长到E,使,连接交于点F,点F是的中点求证:(1)(2)四边形是平行四边形【答案】(1)见解析;(2)见解析【解析】证明:(1),点F是的中点,在与中,;(2),四边形是平行四边形【点睛】本题考查全等三角形的判定和性质、平行四边形判定定理,解题的关键是熟练掌握全等三角形的判
9、定和性质、平行四边形判定定理.5(2019山东初二期末)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AECF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:AEMCFN; (2)求证:四边形BMDN是平行四边形.【答案】证明见解析【解析】证明:(1) 四边形ABCD是平行四边形,ABDC ,ADBCE=F,DAB=BCDEAM=FCN又AE=CF AEMCFN(ASA)(2) 由(1)AEMCFN AM=CN又四边形ABCD是平行四边形ABCDBMDN四边形BMDN是平行四边形6(2019黑龙江中考真题).已知:在矩形中,是对角线,于点,于点;(1)如图1
10、,求证:;(2)如图2,当时,连接.,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形面积的.【答案】(1)详见解析;(2)的面积的面积的面积的面积矩形面积的【解析】(1)证明:四边形是矩形, ,于点,于点,在和中,;(2)解:的面积的面积的面积的面积矩形面积的理由如下:,的面积矩形的面积,的面积矩形的面积;作于,如图所示:,的面积矩形的面积,同理:的面积矩形的面积【点睛】本题主要考查了矩形的性质、全等三角形的判定与性质、直角三角形中角所对的直角边等于斜边的一半,灵活应用矩形的性质证全等,熟练掌握直角三角形角的性质是解题的关键.7(2019浙江中考真题
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年中 数学 基础 题专练 21 平行四边形 背景 证明 计算
限制150内