七年级上册数学易错题精彩编辑.doc
-!有理数部分1填空:(1)当a_时,a与a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是_;(3)在数轴上,A点表示1,与A点距离3个单位长度的点所表示的数是_;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_错解 (1)a为任何有理数;(2)5;(3)3;(4)62用“有”、“没有”填空:在有理数集合里,_最大的负数,_最小的正数,_绝对值最小的有理数错解 有,有,没有3用“都是”、“都不是”、“不都是”填空:(1)所有的整数_负整数;(2)小学里学过的数_正数;(3)带有“”号的数_正数;(4)有理数的绝对值_正数;(5)若|a|b|=0,则a,b_零;(6)比负数大的数_正数错解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是4用“一定”、“不一定”、“一定不”填空:(1)a_是负数;(2)当ab时,_有|a|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数_大于距原点较远的点所表示的数;(4)|x|y|_是正数;(5)一个数_大于它的相反数;(6)一个数_小于或等于它的绝对值;错解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定5把下列各数从小到大,用“”号连接:并用“”连接起来8填空:(1)如果x=(11),那么x=_;(2)绝对值不大于4的负整数是_;(3)绝对值小于4.5而大于3的整数是_错解 (1)11;(2)1,2,3;(3)49根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值10代数式|x|的意义是什么?错解 代数式|x|的意义是:x的相反数的绝对值11用适当的符号(、)填空:(1)若a是负数,则a_a;(2)若a是负数,则a_0;(3)如果a0,且|a|b|,那么a_ b错解 (1);(2);(3)12写出绝对值不大于2的整数错解 绝对值不大2的整数有1,113由|x|=a能推出x=a吗?错解 由|x|=a能推出x=a如由|x|=3得到x=3,由|x|=5得到x=514由|a|=|b|一定能得出a=b吗?错解 一定能得出a=b如由|6|=|6|得出6=6,由|4|=|4|得4=415绝对值小于5的偶数是几?错解 绝对值小于5的偶数是2,416用代数式表示:比a的相反数大11的数错解 a1117用语言叙述代数式:a3错解 代数式a3用语言叙述为:a与3的差的相反数18算式35729如何读?错解 算式35729读作:负三、正五、减七、正二、减九19把下列各式先改写成省略括号的和的形式,再求出各式的值(1)(7)(4)(9)(2)(5);(2)(5)(7)(6)4解(1)(7)(4)(9)(2)(5)=74925=5;(2)(5)(7)(6)4=5764=820计算下列各题:(2)5|5|=10;21用适当的符号(、)填空:(1)若b为负数,则ab_a;(2)若a0,b0,则ab_0;(3)若a为负数,则3a_3错解 (1);(2);(3)22若a为有理数,求a的相反数与a的绝对值的和错解 a|a|=aa=023若|a|=4,|b|=2,且|ab|=ab,求ab的值错解 由|a|=4,得a=4;由|b|=2,得b=2当a=4,b=2时,ab=2;当a=4,b=2时,ab=6;当a=4,b=2时,ab=6;当a=4,b=2时,ab=224列式并计算:7与15的绝对值的和错解 |7|15|=715=2225用简便方法计算:26用“都”、“不都”、“都不”填空:(1)如果ab0,那么a,b_为零;(2)如果ab0,且ab0,那么a,b_为正数;(3)如果ab0,且ab0,那么a,b_为负数;(4)如果ab=0,且ab=0,那么a,b_为零错解 (1)不都;(2)不都;(3)都;(4)不都27填空:(3)a,b为有理数,则ab是_;(4)a,b互为相反数,则(ab)a是_错解 (1)负数;(2)正数;(3)负数;(4)正数28填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是_;错解 (1)3;(2)b029用简便方法计算:解30比较4a和4a的大小:错解 因为4a是正数,4a是负数而正数大于负数,所以4a4a31计算下列各题:(5)151265解=48(4)=12;(5)151265错解 因为|a|=|b|,所以a=b=111=334下列叙述是否正确?若不正确,改正过来(1)平方等于16的数是(4)2;(2)(2)3的相反数是23;错解 (1)正确;(2)正确;(3)正确35计算下列各题;(1)0.752;(2)232解36已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(1)n2_是负数;(2)(1)2n1_是负数;(3)(1)n(1)n1_是零错解 (1)一定不;(2)不一定;(3)一定不37下列各题中的横线处所填写的内容是否正确?若不正确,改正过来(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x0,那么x3=2738用“一定”、“不一定”或“一定不”填空:(1)有理数的平方_是正数;(2)一个负数的偶次幂_大于这个数的相反数;(3)小于1的数的平方_小于原数;(4)一个数的立方_小于它的平方错解 (1)一定;(2)一定;(3)一定;(4)一定不39计算下列各题:(1)(32)3323;(2)24(2)4;(3)2(4)2;解(1)(32)3323=323323=0;(2)24(2)4=0;40用科学记数法记出下列各数:(1)314000000;(2)0.000034错解 (1)314000000=3.14106;(2)0.000034=3.410441判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63(3)由四舍五入得到的近似数3.70和3.7是一样的(4)由四舍五入得到的近似数4.7万,它精确到十分位42改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495有理数错解诊断练习正确答案1(1)不等于0的有理数;(2)5,5;(3)2,4;(4)62(1)没有;(2)没有;(3)有3(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外)4(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较8(1)11;(2)1,2,3,4;(3)4,410x绝对值的相反数11(1);(2);(3)122,1,0,1,213不一定能推出x=a,例如,若|x|=2则x值不存在14不一定能得出a=b,如|4|=|4|,但44152,4,0,2,416a1117a的相反数与3的差18读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九19(1)原式=74925=5;(2)原式=5764=221;22当a0时,a|a|=0,当a0时,a|a|=2a23由|ab|=ab知ab0,根据这一条件,得a=4,b=2,所以ab=2;a=4,b=2,所以ab=6247|15|=715=826(1)都不;(2)都;(3)不都;(4)都27(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)028(1)3或1;(2)b030当a0时,4a4a;当a=0时,4a=4a;当a0时,4a4a(5)15032当b0时,由|a|=|b|得a=b或a=b,33由ab0得a0且b0,或a0且b0,求得原式值为3或134(1)平方等于16的数是4;(2)(2)3的相反数是23;(3)(5)10036(1)不一定;(2)一定;(3)一定37(1)负数或正数;(2)a=1,0,1;(3)a=0,1;(4)a327;(5)x32738(1)不一定;(2)不一定;(3)不一定;(4)不一定40(1)3.14108;(2)3.410-541(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位42(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495整式的加减例1 下列说法正确的是( ) A. 的指数是0B. 没有系数 C. 3是一次单项式D. 3是单项式 分析:正确答案应选D。这道题主要是考查学生对单项式的次数和系数的理解。选A或B的同学忽略了的指数或系数1都可以省略不写,选C的同学则没有理解单项式的次数是指字母的指数。 例2 多项式的次数是( ) A. 15次B. 6次C. 5次D. 4次 分析:易错答A、B、D。这是由于没有理解多项式的次数的意义造成的。正确答案应选C。 例3 下列式子中正确的是( ) A. B. C. D. 分析:易错答C。许多同学做题时由于马虎,看见字母相同就误以为是同类项,轻易地就上当,学习中务必要引起重视。正确答案选B。 例4 把多项式按的降幂排列后,它的第三项为( ) A. 4B. C. D. 分析:易错答B和D。选B的同学是用加法交换律按的降幂排列时没有连同“符号”考虑在内,选D的同学则完全没有理解降幂排列的意义。正确答案应选C。 例5 整式去括号应为( ) A. B. C. D. 分析:易错答A、D、C。原因有:(1)没有正确理解去括号法则;(2)没有正确运用去括号的顺序是从里到外,从小括号到中括号。 例6 当取( )时,多项式中不含项 A. 0B. C. D. 分析:这道题首先要对同类项作出正确的判断,然后进行合并。合并后不含项(即缺项)的意义是项的系数为0,从而正确求解。正确答案应选C。 例7 若A与B都是二次多项式,则AB:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结论中,不正确的有( ) A. 2个B. 3个C. 4个D. 5个 分析:易错答A、C、D。解这道题时,尽量从每一个结论的反面入手。如果能够举出反例即可说明原结论不成立,从而得以正确的求解。 例8 在的括号内填入的代数式是( ) A. B. C. D. 分析:易错答D。添后一个括号里的代数式时,括号前添的是“”号,那么这两项都要变号,正确的是A。 例9 求加上等于的多项式是多少? 错解: 这道题解错的原因在哪里呢? 分析:错误的原因在第一步,它没有把减数()看成一个整体,而是拆开来解。 正解: 答:这个多项式是 例10 化简 错解:原式 分析:错误的原因在第一步应用乘法分配律时,这一项漏乘了3。 正解:原式 巩固练习 1. 下列整式中,不是同类项的是( ) A. B. 1与2 C. 与D. 2. 下列式子中,二次三项式是( ) A. B. C. D. 3. 下列说法正确的是( ) A. 的项是B. 是多项式 C. 是三次多项式D. 都是整式 4. 合并同类项得( ) A. B. 0C. D. 5. 下列运算正确的是( ) A. B. C. D. 6. 的相反数是( ) A. B. C. D. 7. 一个多项式减去等于,求这个多项式。 参考答案 1. D2. C3. B4. A5. A6. C7. 一元一次方程部分一、解方程和方程的解的易错题:一元一次方程的解法:重点:等式的性质,同类项的概念及正确合并同类项,各种情形的一元一次方程的解法;难点:准确运用等式的性质进行方程同解变形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么x=-2(2)解方程20-3x=5,移项后正确的是( )A.-3x=5+20 B.20-5=3x C.3x=5-20 D.-3x=-5-20(3)解方程-x=-30,系数化为1正确的是( )A.-x=30 B.x=-30 C.x=30 D. (4)解方程 ,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以 ,得 C.去括号,得x-24=7D.方程整理,得 解析:(1) 正确选项D。方程同解变形的理论依据一为数的运算法则,运算性质;一为等式性质(1)、(2)、(3),通常都用后者,性质中的关键词是“两边都”和“同一个”,即对等式变形必须两边同时进行加或减或乘或除以,不可漏掉一边、一项,并且加减乘或除以的数或式完全相同。选项A错误,原因是没有将“等号”右边的每一项都除以3;选项B错误,原因是左边减去x-3时,应写作“-(x-3)”而不“-x-3”,这里有一个去括号的问题;C亦错误,原因是思维跳跃短路,一边记着是除以而到另一边变为乘以了,对一般象这样小数的除法可以运用有理数运算法则变成乘以其倒数较为简捷,选项D正确,这恰好是等式性质对称性即a=bb=a。(2) 正确选项B。解方程的“移项”步骤其实质就是在“等式的两边同加或减同一个数或式”性质,运用该性质且化简后恰相当于将等式一边的一项变号后移到另一边,简单概括就成了“移项”步骤,此外最易错的就是“变号”的问题,如此题选项A、C、D均出错在此处。解决这类易错点的办法是:或记牢移项过程中的符号法则,操作此步骤时就予以关注;或明析其原理,移项就是两边同加或减该项的相反数,使该项原所在的这边不再含该项-即代数和为0。(3)正确选项C。选项B、D错误的原因虽为计算出错,但细究原因都是在变形时,法则等式性质指导变形意识淡,造成思维短路所致。(4)等式性质及方程同解变形的法则虽精炼,但也很宏观,具体到每一个题还需视题目的具体特点灵活运用,解一道题目我们不光追求解出,还应有些简捷意识,如此处的选项A、B、D所提供方法虽然都是可行方法,但与选项C相比,都显得繁。例2.(1)若式子 3nxm+2y4和 -mx5yn-1能够合并成一项,试求m+n的值。(2)下列合并错误的个数是( )5x6+8x6=13x123a+2b=5ab8y2-3y2=56anb2n-6a2nbn=0(A)1个 (B)2个 (C)3个 (D)4个解析:(1)3nxm+2y4和-mx5yn-1能够合并,则说明它们是同类项,即所含字母相同,且相同字母的指数也相同。此题两式均各含三个字母n、x、y和m、x、y,若把m、n分别看成2个字母,则此题显然与概念题设不合,故应该把m、n看作是可由已知条件求出的常数,从而该归并为单项式的系数,再从同类项的概念出发,有: 解得m=3 ,n=5从而m+n=8评述:运用概念定义解决问题是数学中常用的方法之一,本题就是准确地理解了“同类项”、“合并”的概念,认真进行了逻辑判断;确定了m、n为可确定值的系数。(2)“合并”只能在同类项之间进行,且只对同类项间的系数进行加减运算化简,这里的实质是逆用乘法对加法的分配律,所以4个合并运算,全部错误,其中、就不是同类项,不可合并,、分别应为:5x6+8x6=13x68y2-3y2=5y2例3.解下列方程(1)8-9x=9-8x(2) (3) (4) 解:(1)8-9x=9-8x -9x+8x=9-8 -x=1 x=1易错点关注:移项时忘了变号;(2) 法一: 4(2x-1)-3(5x+1)=248x-4-15x-3=24-7x=31 易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了, 4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;法二:(就用分数算) 此处易错点是第一步拆分式时将 ,忽略此处有一个括号前面是负号,去掉括号要变号的问题,即 ;(3) 6x-3(3-2x)=6-(x+2)6x-9+6x=6-x-212x+x=4+913x=13x=1易错点关注:两边同乘,每项均乘到,去括号注意变号;(4) 2(4x-1.5)-5(5x-0.8)=10(1.2-x) 8x-3-25x+4=12-10x -7x=11 评述:此题首先需面对分母中的小数,有同学会忘了小数运算的细则,不能发现 ,而是两边同乘以0.50.2进行去分母变形,更有思维跳跃的同学认为0.50.2=1,两边同乘以1,将方程变形为:0.2(4x-1.5)-0.5(5x-0.8)=10(1.2-x)概述:无论什么样的一元一次方程,其解题步骤概括无非就是“移项,合并,未知数系数化1”这几个步骤,从操作步骤上来讲很容易掌握,但由于进行每个步骤时都有些需注意的细节,许多都是我们认识问题的思维瑕点,需反复关注,并落实理解记忆才能保证解方程问题做的正确率。若仍不够自信,还可以用检验步骤予以辅助,理解方程“解”的概念。例4.下列方程后面括号内的数,都是该方程的解的是( )A.4x-1=9 B. C.x2+2=3x (-1,2)D.(x-2)(x+5)=0 (2,-5)分析:依据方程解的概念,解就是代入方程能使等式成立的值,分别将括号内的数代入方程两边,求方程两边代数式的值,只有选项D中的方程式成立,故选D。评述:依据方程解的概念,解完方程后,若能有将解代入方程检验的习惯将有助于促使发现易错点,提高解题的正确率。例5.根据以下两个方程解的情况讨论关于x的方程ax=b(其中a、b为常数)解的情况。(1)3x+1=3(x-1)(2) 解:(1)3x+1=3(x-1)3x-3x=-3-10x=-4显然,无论x取何值,均不能使等式成立,所以方程3x+1=3(x-1)无解。(2) 0x=0显然,无论x取何值,均可使方程成立,所以该方程的解为任意数。由(1)(2)可归纳:对于方程ax=b当a0时,它的解是 ;当a=0时,又分两种情况:当b=0时,方程有无数个解,任意数均为方程的解;当b0时,方程无解。二、从实际问题到方程(一)本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的_;(2)“设”:用字母(例如x)表示问题的_;(3)“列”:用字母的代数式表示相关的量,根据_列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答(6)“答”:答出题目中所问的问题。(二)易错题,请你想一想1.建筑工人浇水泥柱时,要把钢筋折弯成正方形.若每个正方形的面积为400平方厘米,应选择下列表中的哪种型号的钢筋?型号ABCD长度(cm)90708295思路点拨:解出方程有两个值,必须进行检查求得的值是否正确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C型钢筋.2.你在作业中有错误吗?请记录下来,并分析错误原因.三、行程问题(一)本课重点,请你理一理1.基本关系式:_ _ ;2.基本类型: 相遇问题; 相距问题; _ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_ 逆水(风)速度=_(二)易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢? 思路点拨:此题是关于行程问题中的同向而行类型。由题可知,甲、乙首次相遇时,乙走的路程比甲多一圈;第二次相遇他们之间的路程差为两圈的路程。所以经过8分钟首次相遇,经过16分钟第二次相遇。 2.你在作业中有错误吗?请记录下来,并分析错误原因.四、调配问题(一)本课重点,请你理一理初步学会列方程解调配问题各类型的应用题;分析总量等于_一类应用题的基本方法和关键所在.(二)易错题,请你想一想1. 为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元?2. 甲种糖果的单价是每千克20元,乙种糖果的单价是每千克15元,若要配制200千克单价为每千克18元的混合糖果,并使之和分别销售两种糖果的总收入保持不变,问需甲、乙两种糖果各多少千克?五、工程问题(一)本课重点,请你理一理工程问题中的基本关系式:工作总量工作效率工作时间 各部分工作量之和 = 工作总量 (二)易错题,请你想一想1.一项工程,甲单独做要10天完成,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配?思路点拨:此题注意的问题是报酬分配的根据是他们各自的工作量。所以甲、乙两人各得到800元、200元.2.你在作业中有错误吗?请记录下来,并分析错误原因.六、储蓄问题(一)本课重点,请你理一理1.本金、利率、利息、本息这四者之间的关系:(1)利息=本金利率(2)本息=本金+利息(3)税后利息=利息-利息利息税率2通过经历“问题情境建立数学模型解释、应用与拓展”的过程,理解和体会数学建模思想在解决实际问题中的作用.(二)易错题,请你想一想1.一种商品的买入单价为1500元,如果出售一件商品获得的毛利润是卖出单价的15%,那么这种商品出售单价应定为多少元?(精确到1元)思路点拨:由“利润=出售价-买入价”可知这种商品出售单价应定为2000元.2.你在作业中有错误吗?请记录下来,并分析错误原因。浙江教育出版社数学第六章数据与图表一、选择题百分数12.81 近年来我国国内生产总值年增长率的变化情况如图所示.下列结论不正确的是( ) (A)这7年中,每年的国内生产总值不断增长. 6141027.8 (B)这7年中,每年的国内生产总值有增有减. 1110。54128 (C)2000年国内生产总值的年增长率开始回升. 9.8 8.8(D) 1995年至1999年,国内生产总值的年增 7.1 7.1 8。0长率逐年减小. 年份1994 1995 1996 1997 1998 1999 20002. 甲、乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图). 甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只;乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个.甲、乙两人得出以下结论: 该县第2年养鸡场产鸡的数量为1.3万只;该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;该县这7年养鸡场产鸡的数量逐年增长;这7年中,第5年该县养鸡场出产鸡的数量最多.其中正确的判断有( )(A)3个. (B)2个. (C)1个. (D)0个.二、填空题3. 小华粉刷他的卧室花了10时,他记录的完成工作量的百分数如下: 时间(时)12345678910完成的百分数52535505065708095100 (1)第5时他完成工作量的 ; (2)小华在 时间内完成工作量最大; (3)如果小华从上午8时开始工作,那么他在 时间段没有工作.4为了节省用电,许多家庭的电器更换成“节电”电器。张蕾家6月份用电132度,为了解家里更换部分“节电”电器后的用电情况,7月份连续6天在同一时刻,张蕾记录了电表读数,如下表所示。请估计张蕾家7月份的总用电量为 度。与上个月相比,节约用电百分之 。日期1日2日3日4日5日6日度数(度)1152115611591163116511725根据H市快餐公司个数统计图和各快餐公司盒饭年销售量的平均数统计图所提供的信息,回答下面的问题:(1)2004年该地区销售盒饭共 万盒。(2)该地区盒饭销量最大的年份是 年,这一年的年销量是 万盒。(3)这三年中该地区每年平均销售盒饭多少万盒?第六章的参考答案:1.B 2.B 3. (1) 50%; (2)8:009:00; (3) 12:00-1:00; 4. 124 ; 6 5. (1) 88.5; (2) 2005,160; (3)(501+591.5+802)3=99.5 万盒
收藏
编号:2569629
类型:共享资源
大小:466.21KB
格式:DOC
上传时间:2020-04-20
8
金币
- 关 键 词:
-
年级
上册
数学
易错题
精彩
编辑
编纂
- 资源描述:
-
-!
有理数部分
1.填空:
(1)当a________时,a与-a必有一个是负数;
(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;
(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;
(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_______.
错解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.
2.用“有”、“没有”填空:
在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.
错解 有,有,没有.
3.用“都是”、“都不是”、“不都是”填空:
(1)所有的整数________负整数;
(2)小学里学过的数________正数;
(3)带有“+”号的数________正数;
(4)有理数的绝对值________正数;
(5)若|a|+|b|=0,则a,b________零;
(6)比负数大的数________正数.
错解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.
4.用“一定”、“不一定”、“一定不”填空:
(1)-a________是负数;
(2)当a>b时,________有|a|>|b|;
(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;
(4)|x|+|y|________是正数;
(5)一个数________大于它的相反数;
(6)一个数________小于或等于它的绝对值;
错解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.
5.把下列各数从小到大,用“<”号连接:
并用“>”连接起来.
8.填空:
(1)如果-x=-(-11),那么x=________;
(2)绝对值不大于4的负整数是________;
(3)绝对值小于4.5而大于3的整数是________.
错解 (1)11;(2)-1,-2,-3;(3)4.
9.根据所给的条件列出代数式:
(1)a,b两数之和除a,b两数绝对值之和;
(2)a与b的相反数的和乘以a,b两数差的绝对值;
(3)一个分数的分母是x,分子比分母的相反数大6;
(4)x,y两数和的相反数乘以x,y两数和的绝对值.
10.代数式-|x|的意义是什么?
错解 代数式-|x|的意义是:x的相反数的绝对值.
11.用适当的符号(>、<、≥、≤)填空:
(1)若a是负数,则a________-a;
(2)若a是负数,则-a_______0;
(3)如果a>0,且|a|>|b|,那么a________ b.
错解 (1)>;(2)<;(3)<.
12.写出绝对值不大于2的整数.
错解 绝对值不大2的整数有-1,1.
13.由|x|=a能推出x=a吗?
错解 由|x|=a能推出x=a.如由|x|=3得到x=3,由|x|=5得到x=5.
14.由|a|=|b|一定能得出a=b吗?
错解 一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.
15.绝对值小于5的偶数是几?
错解 绝对值小于5的偶数是2,4.
16.用代数式表示:比a的相反数大11的数.
错解 -a-11.
17.用语言叙述代数式:-a-3.
错解 代数式-a-3用语言叙述为:a与3的差的相反数.
18.算式-3+5-7+2-9如何读?
错解 算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.
19.把下列各式先改写成省略括号的和的形式,再求出各式的值.
(1)(-7)-(-4)-(+9)+(+2)-(-5);
(2)(-5)-(+7)-(-6)+4.
解
(1)(-7)-(-4)-(+9)+(+2)-(-5)
=-7-4+9+2-5=-5;
(2)(-5)-(+7)-(-6)+4
=5-7+6-4=8.
20.计算下列各题:
(2)5-|-5|=10;
21.用适当的符号(>、<、≥、≤)填空:
(1)若b为负数,则a+b________a;
(2)若a>0,b<0,则a-b________0;
(3)若a为负数,则3-a________3.
错解 (1)>;(2)≥;(3)≥.
22.若a为有理数,求a的相反数与a的绝对值的和.
错解 -a+|a|=-a+a=0.
23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.
错解 由|a|=4,得a=4;由|b|=2,得b=2.
当a=4,b=2时,a-b=2;
当a=4,b=-2时,a-b=6;
当a=-4,b=2时,a-b=-6;
当a=-4,b=-2时,a-b=-2.
24.列式并计算:-7与-15的绝对值的和.
错解 |-7|+|-15|=7+15=22.
25.用简便方法计算:
26.用“都”、“不都”、“都不”填空:
(1)如果ab≠0,那么a,b________为零;
(2)如果ab>0,且a+b>0,那么a,b________为正数;
(3)如果ab<0,且a+b<0,那么a,b________为负数;
(4)如果ab=0,且a+b=0,那么a,b________为零.
错解 (1)不都;(2)不都;(3)都;(4)不都.
27.填空:
(3)a,b为有理数,则-ab是_________;
(4)a,b互为相反数,则(a+b)a是________.
错解 (1)负数;(2)正数;(3)负数;(4)正数.
28.填空:
(1)如果四个有理数相乘,积为负数,那么负因数个数是________;
错解 (1)3;(2)b>0.
29.用简便方法计算:
解
30.比较4a和-4a的大小:
错解 因为4a是正数,-4a是负数.而正数大于负数,
所以4a>-4a.
31.计算下列各题:
(5)-151265.
解
=-48(-4)=12;
(5)-151265
错解 因为|a|=|b|,所以a=b.
=1+1+1=3.
34.下列叙述是否正确?若不正确,改正过来.
(1)平方等于16的数是(4)2;
(2)(-2)3的相反数是-23;
错解 (1)正确;(2)正确;(3)正确.
35.计算下列各题;
(1)-0.752;(2)232.
解
36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:
(1)(-1)n+2________是负数;
(2)(-1)2n+1________是负数;
(3)(-1)n+(-1)n+1________是零.
错解 (1)一定不;(2)不一定;(3)一定不.
37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.
(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;
(2)有理数a与它的立方相等,那么a=1;
(3)有理数a的平方与它的立方相等,那么a=0;
(4)若|a|=3,那么a3=9;
(5)若x2=9,且x<0,那么x3=27.
38.用“一定”、“不一定”或“一定不”填空:
(1)有理数的平方________是正数;
(2)一个负数的偶次幂________大于这个数的相反数;
(3)小于1的数的平方________小于原数;
(4)一个数的立方________小于它的平方.
错解 (1)一定;(2)一定;(3)一定;(4)一定不.
39.计算下列各题:
(1)(-32)3+323;(2)-24-(-2)4;
(3)-2(-4)2;
解
(1)(-32)3+323=-323+323
=0;
(2)-24-(-2)4=0;
40.用科学记数法记出下列各数:
(1)314000000;(2)0.000034.
错解 (1)314000000=3.14106;
(2)0.000034=3.410-4.
41.判断并改错(只改动横线上的部分):
(1)用四舍五入得到的近似数0.0130有4个有效数字.
(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.
(3)由四舍五入得到的近似数3.70和3.7是一样的.
(4)由四舍五入得到的近似数4.7万,它精确到十分位.
42.改错(只改动横线上的部分):
(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;
(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;
(3)已知3.412=11.63,那么(34.1)2=116300;
(4)近似数2.40104精确到百分位,它的有效数字是2,4;
(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.
有理数错解诊断练习正确答案
1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.
2.(1)没有;(2)没有;(3)有.
3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.
原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).
4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.
上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.
8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.
10.x绝对值的相反数.
11.(1)<;(2)>;(3)>.
12.-2,-1,0,1,2.
13.不一定能推出x=a,例如,若|x|=-2.则x值不存在.
14.不一定能得出a=b,如|4|=|-4|,但4≠-4.
15.-2,-4,0,2,4.
16.-a+11.
17.a的相反数与3的差.
18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.
19.(1)原式=-7+4-9+2+5=-5;
(2)原式=-5-7+6+4=-2.
21.<;>;>.
22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.
23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.
24.-7+|-15|=-7+15=8.
26.(1)都不;(2)都;(3)不都;(4)都.
27.(1)正数、负数或零;(2)正数、负数或零;
(3)正数、负数或零;(4)0.
28.(1)3或1;(2)b≠0.
30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.
(5)-150.
32.当b≠0时,由|a|=|b|得a=b或a=-b,
33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.
34.(1)平方等于16的数是4;(2)(-2)3的相反数是23;(3)(-5)100.
36.(1)不一定;(2)一定;(3)一定.
37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=27;(5)x3=-27.
38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.
40.(1)3.14108;(2)3.410-5.
41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.
42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.
整式的加减
例1 下列说法正确的是( )
A. 的指数是0 B. 没有系数
C. -3是一次单项式 D. -3是单项式
分析:正确答案应选D。这道题主要是考查学生对单项式的次数和系数的理解。选A或B的同学忽略了的指数或系数1都可以省略不写,选C的同学则没有理解单项式的次数是指字母的指数。
例2 多项式的次数是( )
A. 15次 B. 6次 C. 5次 D. 4次
分析:易错答A、B、D。这是由于没有理解多项式的次数的意义造成的。正确答案应选C。
例3 下列式子中正确的是( )
A. B.
C. D.
分析:易错答C。许多同学做题时由于马虎,看见字母相同就误以为是同类项,轻易地就上当,学习中务必要引起重视。正确答案选B。
例4 把多项式按的降幂排列后,它的第三项为( )
A. -4 B. C. D.
分析:易错答B和D。选B的同学是用加法交换律按的降幂排列时没有连同“符号”考虑在内,选D的同学则完全没有理解降幂排列的意义。正确答案应选C。
例5 整式去括号应为( )
A. B.
C. D.
分析:易错答A、D、C。原因有:(1)没有正确理解去括号法则;(2)没有正确运用去括号的顺序是从里到外,从小括号到中括号。
例6 当取( )时,多项式中不含项
A. 0 B. C. D.
分析:这道题首先要对同类项作出正确的判断,然后进行合并。合并后不含项(即缺项)的意义是项的系数为0,从而正确求解。正确答案应选C。
例7 若A与B都是二次多项式,则A-B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结论中,不正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
分析:易错答A、C、D。解这道题时,尽量从每一个结论的反面入手。如果能够举出反例即可说明原结论不成立,从而得以正确的求解。
例8 在的括号内填入的代数式是( )
A. B.
C. D.
分析:易错答D。添后一个括号里的代数式时,括号前添的是“-”号,那么这两项都要变号,正确的是A。
例9 求加上等于的多项式是多少?
错解:
这道题解错的原因在哪里呢?
分析:错误的原因在第一步,它没有把减数()看成一个整体,而是拆开来解。
正解:
答:这个多项式是
例10 化简
错解:原式
分析:错误的原因在第一步应用乘法分配律时,这一项漏乘了-3。
正解:原式
巩固练习
1. 下列整式中,不是同类项的是( )
A. B. 1与-2
C. 与 D.
2. 下列式子中,二次三项式是( )
A. B.
C. D.
3. 下列说法正确的是( )
A. 的项是 B. 是多项式
C. 是三次多项式 D. 都是整式
4. 合并同类项得( )
A. B. 0 C. D.
5. 下列运算正确的是( )
A. B.
C. D.
6. 的相反数是( )
A. B.
C. D.
7. 一个多项式减去等于,求这个多项式。
参考答案
1. D 2. C 3. B 4. A 5. A 6. C 7.
一元一次方程部分
一、解方程和方程的解的易错题:
一元一次方程的解法:
重点:等式的性质,同类项的概念及正确合并同类项,各种情形的一元一次方程的解法;
难点:准确运用等式的性质进行方程同解变形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);
学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。
易错范例分析:
例1.
(1)下列结论中正确的是( )
A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5
B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6
C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5
D.如果-2=x,那么x=-2
(2)解方程20-3x=5,移项后正确的是( )
A.-3x=5+20 B.20-5=3x C.3x=5-20 D.-3x=-5-20
(3)解方程-x=-30,系数化为1正确的是( )
A.-x=30 B.x=-30 C.x=30 D.
(4)解方程 ,下列变形较简便的是( )
A.方程两边都乘以20,得4(5x-120)=140
B.方程两边都除以 ,得
C.去括号,得x-24=7
D.方程整理,得
解析:
(1) 正确选项D。方程同解变形的理论依据一为数的运算法则,运算性质;一为等式性质(1)、(2)、(3),通常都用后者,性质中的关键词是“两边都”和“同一个”,即对等式变形必须两边同时进行加或减或乘或除以,不可漏掉一边、一项,并且加减乘或除以的数或式完全相同。选项A错误,原因是没有将“等号”右边的每一项都除以3;选项B错误,原因是左边减去x-3时,应写作“-(x-3)”而不“-x-3”,这里有一个去括号的问题;C亦错误,原因是思维跳跃短路,一边记着是除以而到另一边变为乘以了,对一般象这样小数的除法可以运用有理数运算法则变成乘以其倒数较为简捷,选项D正确,这恰好是等式性质③对称性即a=bb=a。
(2) 正确选项B。解方程的“移项”步骤其实质就是在“等式的两边同加或减同一个数或式”性质①,运用该性质且化简后恰相当于将等式一边的一项变号后移到另一边,简单概括就成了“移项”步骤,此外最易错的就是“变号”的问题,如此题选项A、C、D均出错在此处。解决这类易错点的办法是:或记牢移项过程中的符号法则,操作此步骤时就予以关注;或明析其原理,移项就是两边同加或减该项的相反数,使该项原所在的这边不再含该项----即代数和为0。
(3)正确选项C。选项B、D错误的原因虽为计算出错,但细究原因都是在变形时,法则等式性质指导变形意识淡,造成思维短路所致。
(4)等式性质及方程同解变形的法则虽精炼,但也很宏观,具体到每一个题还需视题目的具体特点灵活运用,解一道题目我们不光追求解出,还应有些简捷意识,如此处的选项A、B、D所提供方法虽然都是可行方法,但与选项C相比,都显得繁。
例2.
(1)若式子 3nxm+2y4和 -mx5yn-1能够合并成一项,试求m+n的值。
(2)下列合并错误的个数是( )
①5x6+8x6=13x12②3a+2b=5ab③8y2-3y2=5④6anb2n-6a2nbn=0
(A)1个 (B)2个 (C)3个 (D)4个
解析:
(1)3nxm+2y4和-mx5yn-1能够合并,则说明它们是同类项,即所含字母相同,且相同字母的指数也相同。此题两式均各含三个字母n、x、y和m、x、y,若把m、n分别看成2个字母,则此题显然与概念题设不合,故应该把m、n看作是可由已知条件求出的常数,从而该归并为单项式的系数,再从同类项的概念出发,有:
解得m=3 ,n=5从而m+n=8
评述:运用概念定义解决问题是数学中常用的方法之一,本题就是准确地理解了“同类项”、“合并”的概念,认真进行了逻辑判断;确定了m、n为可确定值的系数。
(2)“合并”只能在同类项之间进行,且只对同类项间的系数进行加减运算化简,这里的实质是逆用乘法对加法的分配律,所以4个合并运算,全部错误,其中②、④就不是同类项,不可合并,①、②分别应为:5x6+8x6=13x6 8y2-3y2=5y2
例3.解下列方程
(1)8-9x=9-8x
(2)
(3)
(4)
解:
(1)8-9x=9-8x
-9x+8x=9-8
-x=1
x=1
易错点关注:移项时忘了变号;
(2)
法一:
4(2x-1)-3(5x+1)=24
8x-4-15x-3=24
-7x=31
易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了, 4(2x-1)化为8x-1,分配需逐项分配,
-3(5x+1)化为-15x+3忘了去括号变号;
法二:(就用分数算)
此处易错点是第一步拆分式时将 ,忽略此处有一个括号前面是负号,去掉括号要变号的问题,即 ;
(3)
6x-3(3-2x)=6-(x+2)
6x-9+6x=6-x-2
12x+x=4+9
13x=13
x=1易错点关注:两边同乘,每项均乘到,去括号注意变号;
(4)
2(4x-1.5)-5(5x-0.8)=10(1.2-x)
8x-3-25x+4=12-10x
-7x=11
评述:此题首先需面对分母中的小数,有同学会忘了小数运算的细则,不能发现 ,而是两边同乘以0.50.2进行去分母变形,更有思维跳跃的同学认为0.50.2=1,两边同乘以1,将方程变形为:0.2(4x-1.5)-0.5(5x-0.8)=10(1.2-x)
概述:无论什么样的一元一次方程,其解题步骤概括无非就是“移项,合并,未知数系数化1”这几个步骤,从操作步骤上来讲很容易掌握,但由于进行每个步骤时都有些需注意的细节,许多都是我们认识问题的思维瑕点,需反复关注,并落实理解记忆才能保证解方程问题――做的正确率。若仍不够自信,还可以用检验步骤予以辅助,理解方程“解”的概念。
例4.下列方程后面括号内的数,都是该方程的解的是( )
A.4x-1=9
B.
C.x2+2=3x (-1,2)
D.(x-2)(x+5)=0 (2,-5)
分析:依据方程解的概念,解就是代入方程能使等式成立的值,分别将括号内的数代入方程两边,求方程两边代数式的值,只有选项D中的方程式成立,故选D。
评述:依据方程解的概念,解完方程后,若能有将解代入方程检验的习惯将有助于促使发现易错点,提高解题的正确率。
例5.根据以下两个方程解的情况讨论关于x的方程ax=b(其中a、b为常数)解的情况。
(1)3x+1=3(x-1)
(2)
解:
(1)3x+1=3(x-1)
3x-3x=-3-1
0x=-4
显然,无论x取何值,均不能使等式成立,所以方程3x+1=3(x-1)无解。
(2)
0x=0
显然,无论x取何值,均可使方程成立,所以该方程的解为任意数。
由(1)(2)可归纳:
对于方程ax=b
当a≠0时,它的解是 ;
当a=0时,又分两种情况:
①当b=0时,方程有无数个解,任意数均为方程的解;
②当b≠0时,方程无解。
二、从实际问题到方程
(一)本课重点,请你理一理
列方程解应用题的一般步骤是:
(1)“找”:看清题意,分析题中及其关系,找出用来列方程的____________;
(2)“设”:用字母(例如x)表示问题的_______;
(3)“列”:用字母的代数式表示相关的量,根据__________列出方程;
(4)“解”:解方程;
(5)“验”:检查求得的值是否正确和符合实际情形,并写出答
(6)“答”:答出题目中所问的问题。
(二)易错题,请你想一想
1.建筑工人浇水泥柱时,要把钢筋折弯成正方形.若每个正方形的面积为400平方厘米,应选择下列表中的哪种型号的钢筋?
型号
A
B
C
D
长度(cm)
90
70
82
95
思路点拨:解出方程有两个值,必须进行检查求得的值是否正确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C型钢筋.
2.你在作业中有错误吗?请记录下来,并分析错误原因.
三、行程问题
(一)本课重点,请你理一理
1.基本关系式:_________________ __________________ ;
2.基本类型: 相遇问题; 相距问题; ____________ ;
3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).
4.航行问题的数量关系:
(1)顺流(风)航行的路程=逆流(风)航行的路程
(2)顺水(风)速度=_________________________
逆水(风)速度=_________________________
(二)易错题,请你想一想
1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?
思路点拨:此题是关于行程问题中的同向而行类型。由题可知,甲、乙首次相遇时,乙走的路程比甲多一圈;第二次相遇他们之间的路程差为两圈的路程。所以经过8分钟首次相遇,经过16分钟第二次相遇。
2.你在作业中有错误吗?请记录下来,并分析错误原因.
四、调配问题
(一)本课重点,请你理一理
初步学会列方程解调配问题各类型的应用题;分析总量等于_________一类应用题的基本方法和关键所在.
(二)易错题,请你想一想
1.. 为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元?
2.. 甲种糖果的单价是每千克20元,乙种糖果的单价是每千克15元,若要配制200千克单价为每千克18元的混合糖果,并使之和分别销售两种糖果的总收入保持不变,问需甲、乙两种糖果各多少千克?
五、工程问题
(一)本课重点,请你理一理
工程问题中的基本关系式:
工作总量=工作效率工作时间
各部分工作量之和 = 工作总量
(二)易错题,请你想一想
1.一项工程,甲单独做要10天完成,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配?
思路点拨:此题注意的问题是报酬分配的根据是他们各自的工作量。所以甲、乙两人各得到800元、200元.
2.你在作业中有错误吗?请记录下来,并分析错误原因.
六、储蓄问题
(一)本课重点,请你理一理
1.本金、利率、利息、本息这四者之间的关系:
(1)利息=本金利率
(2)本息=本金+利息
(3)税后利息=利息-利息利息税率
2.通过经历“问题情境——建立数学模型——解释、应用与拓展”的过程,理解和体会数学建模思想在解决实际问题中的作用.
(二)易错题,请你想一想
1.一种商品的买入单价为1500元,如果出售一件商品获得的毛利润是卖出单价的15%,那么这种商品出售单价应定为多少元?(精确到1元)
思路点拨:由“利润=出售价-买入价”可知这种商品出售单价应定为2000元.
2.你在作业中有错误吗?请记录下来,并分析错误原因。
浙江教育出版社数学第六章《数据与图表》
一、选择题
百分数
12.8
1. 近年来我国国内生产总值年增长率的变化情况如
图所示.下列结论不正确的是( )
(A)这7年中,每年的国内生产总值不断增长.
6
14
10
2
7.8
(B)这7年中,每年的国内生产总值有增有减. 1110。5
4
12
8
(C)2000年国内生产总值的年增长率开始回升. 9.8 8.8
(D) 1995年至1999年,国内生产总值的年增 7.1 7.1 8。0
长率逐年减小.
年份
1994 1995 1996 1997 1998 1999 2000
2. 甲、乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图).
甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只;乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个.甲、乙两人得出以下结论:
①该县第2年养鸡场产鸡的数量为1.3万只;
②该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;
③该县这7年养鸡场产鸡的数量逐年增长;
④这7年中,第5年该县养鸡场出产鸡的数量最多.
其中正确的判断有( )
(A)3个. (B)2个. (C)1个. (D)0个.
二、填空题
3. 小华粉刷他的卧室花了10时,他记录的完成工作量的百分数如下:
时间(时)
1
2
3
4
5
6
7
8
9
10
完成的百分数
5
25
35
50
50
65
70
80
95
100
(1)第5时他完成工作量的 %;
(2)小华在 时间内完成工作量最大;
(3)如果小华从上午8时开始工作,那么他在 时间段没有工作.
4.为了节省用电,许多家庭的电器更换成“节电”电器。张蕾家6月份用电132度,为了解家里更换部分“节电”电器后的用电情况,7月份连续6天在同一时刻,张蕾记录了电表读数,如下表所示。请估计张蕾家7月份的总用电量为 度。与上个月相比,节约用电百分之 。
日期
1日
2日
3日
4日
5日
6日
度数(度)
1152
1156
1159
1163
1165
1172
5.根据H市快餐公司个数统计图和各快餐公司盒饭年销售量的平均数统计图所提供的信息,回答下面的问题:
(1)2004年该地区销售盒饭共 万盒。
(2)该地区盒饭销量最大的年份是 年,这一年的年销量是 万盒。
(3)这三年中该地区每年平均销售盒饭多少万盒?
第六章的参考答案:1.B 2.B 3. (1) 50%; (2)8:00—9:00; (3) 12:00---1:00;
4. 124 ; 6 5. (1) 88.5; (2) 2005,160; (3)(501+591.5+802)3=99.5 万盒
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。