北京理工大学信号与系统实验报告4 LTI系统的频域分析.docx
《北京理工大学信号与系统实验报告4 LTI系统的频域分析.docx》由会员分享,可在线阅读,更多相关《北京理工大学信号与系统实验报告4 LTI系统的频域分析.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北京理工大学信号与系统实验报告4 LTI系统的频域分析 实验4 LTI 系统的频域分析 (综合型实验) 一、实验目的 1) 加深对LTI 系统频率响应的基本概念的掌握和理解。 2) 学习和掌握LTI 系统频率特性的分析方法。 二、实验原理与方法 1. 连续时间系统的频率响应 系统的频率响应定义为系统单位冲击响应(t)h 的傅里叶变换,即 ()()e j H h d + - = ? (1) 若LTI 连续时间系统的单位冲激响应为(t)h ,输入信号为(t)x ,根据系统的时域分析可知系统的零状态响应为 (t)(t)*h(t)y x = (2) 对上式两端分别求傅里叶变换,由时域卷积定理可得 Y(
2、)X()H()= (3) 因此系统的频率响应还可以由系统的零状态响应和输入的傅里叶变换之比得到: H()Y()/X()= (4) H()反映了LTI 连续时间系统对不同频率信号的响应特性,是系统内在的固有特性, 与外部激励无关。H()又可以表示成: () H()|H()|e j = (5) 其中|H()|成为系统的幅度响应,()成为系统的相位响应。当虚指数信号e j t 作用 LTI 系统时,系统的零状态响应(t)y 仍然是同频率的虚指数信号,即 (t)e ()j t y H = (6) 由此还可以推导出正弦信号作用在系统上的响应如下表所示: 对于下述微分方程描述的LTI 连续时间系统 ()
3、(m)0 (t)(t)N M n n m n m a y b x = (7) 其频率响应(j )H 可表示为(8)式所示的j 的有理多项式。 1110 1 110 (j )(j ).j ()()()(j )(j ).j M M M M N N N N b b b b Y H X a a a a -+=+ (8) MATLAB 的信号处理工具箱提供了专门的函数freqs ,用来分析连续时间系统的频率响应,该函数有下列几种调用格式: h,wfreqs(b,a)=计算默认频率范围内200个频率点上的频率响应的取样值,这200 个频率点记录在w 中。 (b,a,w)h freqs = b 、a 分别为
4、表示(j )H 的有理多项式中分子和分母多项式的系数向 量,w 为频率取样点,返回值h 就是频率响应在频率取样点上的数值向量。 h,wfreqs(b,a,n)=计算默认频率范围内n 个频率点上的频率响应的取样值,这n 个 频率点记录在w 中。freqs(b,a,.) 这种调用格式不返回频率响应的取样值,而是以对数坐标的方式绘出系统的幅频响应和相频响应。 2. 离散时间系统的频率响应 LTI 离散时间系统的频率响应定义为单位抽样响应h(n)的离散时间傅里叶变换。 (e )(n)e j j n n H h + -=- = (9) 对于任意输入信号(n)x ,输入与输出信号的离散时间傅里叶变换有如下
5、关系 (e )H(e )X(e )j j j Y = (10) 因此,系统的频率响应还可以表示为 H(e )(e )/X(e )j j j Y = (11) 当系统输入信号为x(n)e j n =时,系统的输出为 (n k) (n)e *(n)(k)e (e )j n j j n j k y h e h H + -=- = = (12) 由(12)式可知,虚指数信号通过LTI 离散时间系统后信号的频率不变,信号的幅度由系统的频率响应的幅度值确定,所以(e )j H 表示了系统对不同频率信号的衰减量。 一般情况下离散系统的频率响应(e )j H 是复值函数,可用幅度和相位来表示。 ()(e )|
6、(e )|e j j j H H = (13) 其中|(e )|j H 称为系统的幅度响应,()称为系统的相位响应。 若LTI 离散系统可以由如下差分方程描述。 (n i)(n j)N M i j i j a y b x =-=- (14) 则由(11)描述的离散时间系统的频率响应(e )j H 可以表示为e j 的有理多项式。 0101.(e )(e )(e ).j jM j j M j j jN N b b e b e Y H X a a e a e - - += + (15) MATLAB 的信号处理工具箱提供了专门的函数freqz ,用来分析连续时间系统的频率响应,该函数有下列几种调用
7、格式: H,wfreqz(b,a,n)= b 、a 分别为有理多项式中分子和分母多项式的系数向量,返回 值H 是频率响应在0pi 范围内n 个频率等分点上的数值向量,w 包含了这n 个频率点。 H,wfreqz(b,a,n,whole)=计算02n 个频率点上的频率响应的取样值,这n 个频 率点记录在w 中。 H freqz(b,a,)w = w 为频率取样点,计算这些频率点上的频率响应的取样值。 freqz(b,a,.)这种调用格式不返回频率响应的取样值,而是直接绘出系统的幅频响应和 相频响应。 三、实验内容 (1)已知一个RLC 电路构造的二阶高通滤波器如下图所示,其中R = L=0.4H
8、 ,C=0.05F 1) 计算该电路系统的频率响应及高通截止频率; ()1 ()1 111X Y j C R j L R j L = ? + + 经整理 2 2(j )()Y()/X()(j )10j 50H = + ,使()0.707H =得高通截止频率7.07= 2)利用MATLAB 绘制幅度响应和相位响应曲线,比较系统的频率特性与理论计算的结果是否一致。 b=1 0 0; a=1 10 50; H,w=freqs(b,a); subplot(211); plot(w,abs(H); xlabel(omega(rad/s); ylabel(Magnitude); set(gca,ytick
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京理工大学信号与系统实验报告4 LTI系统的频域分析 北京理工大学 信号 系统 实验 报告 LTI 分析
限制150内