《2020年中考数学一轮复习专题18全等形与全等三角形.docx》由会员分享,可在线阅读,更多相关《2020年中考数学一轮复习专题18全等形与全等三角形.docx(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题18 全等形和全等三角形考点总结【思维导图】【知识要点】知识点1 全等三角形及其性质全等图形概念:能完全重合的图形叫做全等图形. 特征:形状相同。大小相等。对应边相等、对应角相等。全等三角形概念:两个能完全重合的三角形叫做全等三角形. 小结:把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.表示方法:全等用符号“”,读作“全等于”。书写三角形全等时,要注意对应顶点字母要写在对应位置上。全等变换定义:只改变图形的位置,而不改变图形的形状和大小的变换。变换方式(常见):平移、翻折、旋转。全等三角形的性质:对应边相等,对应角相等。1(2017四川中考模拟
2、)已知四边形ABCD各边长如图所示,且四边形OPEF四边形ABCD则PE的长为()A3B5C6D10【答案】D【详解】四边形OPEF四边形ABCDPE=BC=10,故选D.2(2019福建中考模拟)如图,若MNPMEQ,则点Q应是图中的( )A点AB点BC点CD点D【答案】D【详解】MNPMEQ,点Q应是图中的D点,如图,故选:D3(2018广西中考模拟)下列说法中不正确的是()A全等三角形的周长相等 B全等三角形的面积相等C全等三角形能重合 D全等三角形一定是等边三角形【答案】D【详解】根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确
3、.故选D.考查题型一 利用全等三角形性质求线段与角1(2019武冈市第七中学中考模拟)如图,三角形纸片ABC,AB10cm,BC7cm,AC6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则AED的周长为()A9cmB13cmC16cmD10cm【答案】A【解析】解:由折叠的性质知,CD=DE,BC=BE=7cmAB=10cm,BC=7cm,AE=ABBE=3cmAED的周长=AD+DE+AE=AC+AE=6+3=9(cm)故选A2(2017江苏南京溧水孔镇中学中考模拟)如图,ABCDEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC
4、长为( )A1cmB2cmC3cmD4cm【答案】C【详解】解:ABCBAD,EF=BC=5cm,BF=7cm,BC=5cm,CF=EF-CF=3 cm,故选C3(2016广东中考模拟)如图,ACBACB,ACA=30,则BCB的度数为( )A20B30C35D40【答案】B【详解】ACBACB,ACB=ACB,ACB-ACB=ACB-ACB,即BCB=ACA,又ACA=30,BCB=30,故选:B4(2019沂源县中庄中学初一月考)如图,点B,C,D在同一条直线上,B=D=90,ABCCDE,AB=6,BC=8,CE=10.(1)求ABC的周长;(2)求ACE的面积.【答案】(1)24;(2
5、)50【详解】解:(1)ABCCDEAC=CEABC的周长=AB+BC+AC=24(2)ABCCDEAC=CE,ACB=CED,BAC=DCE又B=90ACB+BAC=90ACB+DCE=90ACE=180-(ACB+DCE)=90ACE的面积=12ACCE=50考查题型二 利用全等三角形性质证明线段、角相等1(2019湖北黄石十四中初二期中)如图,点E在AB上,ABCDEC,求证:CE平分BED【答案】见解析【详解】ABCDEC,B=DEC,BC=EC,B=BEC,BEC=DEC,CE平分BED2(2018颍上县第五中学初二期中)若ABCDCB,求证:ABE=DCE.【答案】见解析【详解】证
6、明:ABCDCBABC=DCB,ACB=DBCABC-DBC=DCB-ACB即ABE=DCE知识点2:全等三角形的判定(重点)一般三角形直角三角形判定边角边(SAS)、角边角(ASA)角角边(AAS)、边边边(SSS)具备一般三角形的判定方法斜边和一条直角边对应相等(HL)性质对应边相等,对应角相等对应中线相等,对应高相等,对应角平分线相等注: 判定两个三角形全等必须有一组边对应相等; 全等三角形周长、面积相等证题的思路(重点):考查题型三 已知一边一角(若边为角的对边,找任意角AAS)1(2018四川中考模拟)如图,AB=AE,1=2,C=D求证:AC=AD【答案】见解析【解析】详解:1=2
7、1+EAC=2+EACBAC=EAD在ABC和AED中BAC=EADC=DAB=AEABCAED(AAS)AC=AD2(2014北京中考模拟)已知:如图,E是AC上一点,AB=CE,ABCD,ACB =D求证:BC =ED【答案】证明见解析.【详解】ABCD,A=ECD.在ABC和ECD中,AECD,ACBD,ABCE,ABCECD(AAS).BC=DE3(2018四川中考模拟)已知,如图,E、F分别为ABCD的边BC、AD上的点,且1=2,.求证:AE=CF.【答案】详见解析【详解】四边形ABCD为平行四边形B=D,AB=CD在ABE与CDF中,1=2,B=D,AB=CDABECDFAE=C
8、F4(2016福建中考模拟)如图,ACB90,ACBC,BECE,ADCE求证:ACDCBE【答案】证明详见解析.【详解】ADCE,BECE,ADC=E=90,ACB=90,BCE+ACD=90,B+BCE=90,B=ACD,在BEC和CDA中,ADC=E=90,B=ACD,AC=BC,ACDCBE(AAS)考查题型四 已知一边一角(边为角的邻边(找已知角的另一边SAS)1(2016四川中考真题)如图,C是线段AB的中点,CD=BE,CDBE求证:D=E【答案】见解析【详解】C是线段AB的中点,AC=CB,CDBE,ACD=B,在ACD和CBE中,AC=CB,ACD=B,CD=BE,ACDCB
9、E(SAS),D=E2(2018云南中考模拟)如图,点E,F在AB上,ADBC,AB,AEBF求证:CD【答案】证明见解析【详解】证明:AEBF,AE+EFBF+EF,AFBE,在ADF与BCE中,ADFBCE(SAS),CD3(2019辽宁中考真题)如图,点E,F在BC上,BE=CF,AB=DC,B=C,求证:AF=DE【答案】见解析;【详解】证明:BE=CF,BE+EF=CF+EF,即BF=CE,在ABF和DCE中,AB=DCB=CBF=CE,ABFDCE AF=DE考查题型五 已知一边一角(边为角的邻边(找已知边的对角AAS)1(2013浙江中考真题)如图,ABC与DCB中,AC与BD交
10、于点E,且A=D,AB=DC(1)求证:ABEDCE;(2)当AEB=50,求EBC的度数。【答案】见解析(2)EBC=25【详解】解(1)证明:在ABE和DCE中,A=DAEB=DECAB=DC,ABEDCE(AAS)(2)ABEDCE,BE=EC,EBC=ECB,EBC+ECB=AEB=50,EBC=252(2016广西中考模拟)如图,已知四边形ABCD是平行四边形,DEAB,DFBC,垂足分别是E、F,并且DE=DF求证:(1)ADECDF;(2)四边形ABCD是菱形【答案】见解析【解析】证明:(1)DEAB,DFBC,AED=CFD=900。四边形ABCD是平行四边形,A=C。在AED
11、和CFD中: &AED=CFD&A=C&DE=DF,AEDCFD(AAS)。(2)AEDCFD,AD=CD。四边形ABCD是平行四边形,四边形ABCD是菱形。3(2019陕西中考模拟)如图,四边形ABCD是平行四边形,BE、DF分别是ABC、ADC的平分线,且与对角线AC分别相交于点E、F求证:AE=CF【答案】见解析.【详解】证明:平行四边形ABCD中,ADBC,AD=BC,ACB=CADBE、DF分别是ABC、ADC的平分线,BEC=ABE+BAE=FDC+FCD=DFA,在BEC与DFA中,BECDFAACBCADADBC BECDFA(AAS),AF=CE,AE=CF考查题型六 已知一
12、边一角(边为角的邻边(找已知边的另一角ASA)1(2016湖北中考真题)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图,ABOHCD,相邻两平行线间的距离相等,AC,BD相交于O,ODCD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.【答案】20米.【解析】试题解析:ABCD,ABO=CDO,ODCD,CDO=90,ABO=90,即OBAB,相邻两平行线间的距离相等,OD=OB,在ABO与CDO中,ABOCDO(ASA),CD=AB=20(m)2(2015北京中考模拟
13、)如图,已知,EC=AC,BCE=DCA,A=E;求证:BC=DC【答案】见解析【详解】证明:BCE=DCA,BCE+ACE=DCA+ACE,即ACB=ECD.在ABC和EDC中,ACB=ECDAC=ECA=E,ABCEDC(ASA).BC=DC3(2016湖北中考模拟)如图,已知EFMN,EGHN,且FH=MG,求证:EFGNMH【答案】证明见解析【解析】EFMN, EGHN,F=M, EGF=NHM.FH=MG,FG=MH.在EFG和NMH中F=M, FG=MHEGF=NHM,EFGNMH(ASA)考查题型七 已知两角,找两角的夹边ASA1(2010河北中考真题)如图,在ABC和ADE中,
14、点E在BC边上,BACDAE,BD, ABAD,(1)试说明ABCADE;(2)如果AEC75,将ADE绕点A旋转一个锐角后与ABC重合,求这个旋转角的大小【答案】(1)、证明过程见解析;(2)、30【详解】(1)BAC=DAE,AB=AD,B=D,ABCADE.(2)ABCADEAC=AE,C=AEC=75,CAE=180CAEC=30,ADE绕着点A逆时针旋转30后与ABC重合,这个旋转角为30.2(2019河北中考模拟)某风景区改建中,需测量湖两岸游船码头A、B间的距离,于是工作人员在岸边A、B的垂线AF上取两点E、D,使EDAE再过D点作出AF的垂线OD,并在OD上找一点C,使B、E、
15、C在同一直线上,这时测得CD长就是AB的距离请说明理由【答案】证明见解析.【详解】证明:ABAD,CDAD,ACDE90,又EDAE,AEBCED,ABECED(AAS),ABCD3(2018湖北中考模拟)如图,BDAC于点D,CEAB于点E,AD=AE求证:BE=CD【答案】证明过程见解析【详解】BDAC于点D,CEAB于点E, ADB=AEC=90,在ADB和AEC中,ADB=AECAD=AEA=AADBAEC(ASA) AB=AC, 又AD=AE, BE=CD考查题型八 已知两角,找任意一边AAS 1(2017湖北中考模拟)如图,点E,F在BC上,BECF,AD,BC,AF与DE交于点O
16、(1)求证:ABDC;(2)试判断OEF的形状,并说明理由【答案】(1)证明略(2)等腰三角形,理由略【详解】证明:(1)BECF,BEEFCFEF, 即BFCE 又AD,BC,ABFDCE(AAS), ABDC (2)OEF为等腰三角形 理由如下:ABFDCE,AFB=DECOE=OFOEF为等腰三角形2(2019山西中考真题)已知:如图,点B,D在线段AE上,AD=BE,ACEF,C=H.求证:BC=DH.【答案】证明见解析.【详解】AD=BE,AD-BD=BE-BD,即AB=DE.ACEH,A=E,在ABC和EDH中C=HA=EAB=DE,ABCEDH(AAS),BC=DH.3(2019
17、广西中考模拟)已知:如图,点B、F、C、E在同一条直线上,ABDE,AD,BFEC(1)求证:ABCDEF(2)若A120,B20,求DFC的度数【答案】(1)见解析;(2)DFC40【详解】(1)证明:ABDE,BE,BFECBF+FCEC+CF,即BCEF,在ABC和DEF中,&A=D&B=E&BC=EF ,ABCDEF(AAS);(2)解:A120,B20,ACB40,由(1)知ABCDEF,ACBDFE,DFE40,DFC404(2016江苏中考模拟)如图,在四边形ABCD中,ADBC,A=90,CEBD于E,AB=EC(1)求证:ABDECB;(2)若EDC=65,求ECB的度数;(
18、3)若AD=3,AB=4,求DC的长【答案】(1)证明见解析;(2)40;(3)25【解析】(1)证明:ADBC,ADB=EBC,A=CEB=90,在ABD与CEB中,A=CEBADB=EBCAB=CE,ABDECB;(2)由(1)证得ABDECB,BD=BC,BCD=BDC=65,DCE=90-65=25,ECB=40;(3)由(1)证得ABDECB,CE=AB=4,BE=AB=3,BD=BC=42+32=5,DE=2,CD=22+42=25考查题型九 已知两边,找夹角SAS1(2013湖北中考真题)如图,点D,E在ABC的边BC上,AB=AC,BD=CE求证:AD=AE【解析】证明:AB=
19、AC,B=C。在ABD与ACE中,AB=ACB=CBD=EC,ABDACE(SAS)。AD=AE。2(2018广东中考真题)如图,AB与CD相交于点E,AECE,DEBE求证:AC【答案】证明见解析【详解】在AED和CEB中,AE=CEAED=CEBDE=BE,AEDCEB(SAS),AC(全等三角形对应角相等)3(2019江苏中考真题)如图,在ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBCECB(2)OB=OC【答案】(1)见解析;(2)见解析.【详解】(1)AB=AC,ECB=DBC,在DBC与ECB中 BD=CEDBC=BC=CBE
20、CB, DBCECB;(2)由(1) DBCECB,DCB=EBC,OB=OC.4(2018江苏中考模拟)如图,在五边形ABCDE中,BCD=EDC=90,BC=ED,AC=AD(1)求证:ABCAED;(2)当B=140时,求BAE的度数【答案】(1)详见解析;(2)80【详解】证明:(1)AC=AD,ACD=ADC,又BCD=EDC=90,ACB=ADE,在ABC和AED中,BC=EDACB=ADEAC=AD,ABCAED(SAS);解:(2)当B=140时,E=140,又BCD=EDC=90,五边形ABCDE中,BAE=5401402902=805(2019河北中考模拟)如图,BAD是由
21、BEC在平面内绕点B旋转60而得,且ABBC,BECE,连接DE(1)求证:BDEBCE;(2)试判断四边形ABED的形状,并说明理由【答案】证明见解析.【详解】(1)证明:BAD是由BEC在平面内绕点B旋转60而得,DB=CB,ABD=EBC,ABE=60,ABEC,ABC=90,DBE=CBE=30,在BDE和BCE中,DB=CBDBE=CBEBE=BE,BDEBCE;(2)四边形ABED为菱形;由(1)得BDEBCE,BAD是由BEC旋转而得,BADBEC,BA=BE,AD=EC=ED,又BE=CE,BA=BE=ED= AD四边形ABED为菱形考查题型十已知两边,找直角HL1(2018江
22、苏中考真题)如图,A=D=90,AC=DB,AC、DB相交于点O求证:OB=OC【答案】证明见解析.【解答】证明:在RtABC和RtDCB中BD=CABC=CB,RtABCRtDCB(HL),OBC=OCB,BO=CO2(2019江苏中考模拟)如图所示,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是点E,F,且BE=CF,求证:AD是ABC的角平分线【答案】见解析【详解】证明:DEAB,DFAC,BDEDCF是直角三角形在RtBDE与RtDCF中,BE=CFBD=DC,RtBDERtDCF(HL),DE=DF,又DEAB,DFAC,AD是ABC的角平分线3(2019福建省诏安县霞葛
23、初级中学中考模拟)如图,D、C、F、B四点在一条直线上,ACBD,EFBD,垂足分别为点C、点F,CD=BF求证:(1)ABCEDF;(2)AB/DE【答案】(1)见解析;(2)见解析.【详解】证明:(1)ACBD,EFBD,ABC和EDF为直角三角形,CD=BF,CF+BF=CF+CD,即BC=DF,在RtABC和RtEDF中,AB=DEBC=DF,RtABCRtEDFHL;(2)由(1)可知ABCEDF,B=D,AB/DE考查题型十一 已知两边,找第三边SSS1(2018四川中考模拟)如图,点B、E、C、F在同一条直线上,ABDE,ACDF,BECF,求证:ABDE【答案】详见解析.【解析
24、】证明:由BECF可得BCEF,又ABDE,ACDF,故ABCDEF(SSS),则B=DEF,ABDE2(2018广西中考真题)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ABCDEF;(2)若A=55,B=88,求F的度数.【答案】(1)证明见解析;(2)37【解析】(1)AC=AD+DC, DF=DC+CF,且AD=CFAC=DF在ABC和DEF中,AB=DEBC=EFAC=DFABCDEF(SSS)(2)由(1)可知,F=ACBA=55,B=88ACB=180(A+B)=180(55+88)=37F=ACB=373(2019辽宁中考模拟)已知:如
25、图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AEBF【答案】证明见解析.【解析】AD=BC,AC=BD,在ACE和BDF中,ACBDAEBFCEDF,ACEBDF(SSS)A=B,AEBF;知识点3 角平分线角平分线的性质定理:角平分线上的点到角两边的距离相等; 判定定理:到角两边距离相等的点在角的平分线上三角形中角平分线的性质:三角形的三条角平分线相交于一点,并且这点到三条边距离相等。考查题型十二 图中有角平分线,向两边作垂线1.(2019襄樊市月考)在ABC中,AD是BAC的平分线,E、F分别为AB、AC上的点,且EDF+EAF=180,求证DE=DF【答
26、案】证明见解析.【详解】过D作DMAB于M,DNAC于N,即EMD=FND=90,AD平分BAC,DMAB,DNAC,DM=DN(角平分线性质),EAF+EDF=180,MED+AFD=360-180=180,AFD+NFD=180,MED=NFD,在EMD和FND中MED=DFNDME=DNFDM=DN,EMDFND(AAS),DE=DF2. (2019襄樊市月考)在ABC中,AD是BAC的平分线,E、F分别为AB、AC上的点,且EDF+EAF=180,求证DE=DF【答案】证明见解析.【详解】过D作DMAB于M,DNAC于N,即EMD=FND=90,AD平分BAC,DMAB,DNAC,DM
27、=DN(角平分线性质),EAF+EDF=180,MED+AFD=360-180=180,AFD+NFD=180,MED=NFD,在EMD和FND中MED=DFNDME=DNFDM=DN,EMDFND(AAS),DE=DF3(2017广东中考模拟)如图,OC是AOB的平分线,P是OC上一点,PDOA于点D,PD=6,则点P到边OB的距离为_【答案】6【解析】作PEOB于E,如图,OC是AOB的平分线,PDOA,PEOB,PE=PD=6,即点P到边OB的距离为6故答案为6考查题型十三 角平分线加垂线,三线合一试试看1.如图,已知AEFE,垂足为E,且E是DC的中点(1)如图,如果FCDC,ADDC
28、,垂足分别为C,D,且ADDC,判断AE是FAD的角平分线吗?(不必说明理由)(2)如图,如果(1)中的条件“ADDC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图,如果(1)中的条件改为“ADFC”,(1)中的结论仍成立吗?请说明理由【答案】(1)AE是FAD的角平分线(2)成立(3)成立【详解】(1)AE是FAD的角平分线;(2)成立,如图,延长FE交AD于点B,E是DC的中点,EC=ED,FCDC,ADDC,FCE=EDB=90,在FCE和BDE中,FEC=DEBEC=EDFCE=EDB,FCEBDE,EF=EB,AEFE,AF=AB,AE是FAD的角平分线;(3)
29、成立,如图,延长FE交AD于点B,AD=DC,FCE=EDB,在FCE和BDE中,FEC=DEBEC=EDFCE=EDB,FCEBDE,EF=EB,AEFE,AF=AB,AE是FAD的角平分线.考查题型十四 角平分线平行线,等腰三角形来填1.(2017春 赣州市期末)如图,在ABC中,ABC与ACB的平分线交于点O,过点O作DE/BC,分别交AB,AC于点D,E,若AB=4,AC=3,则ADE的周长是_。【答案】7【解析】解:BO平分ABC,DBO=CBO,DEBC,CBO=DOB,DBO=DOB,BD=DO,同理OE=EC,ADE的周长=AD+AE+ED=AB+AC=4+3=7故答案为:72
30、.(2018江苏中考模拟)如图,ABCD,CB平分ACD,ABC=35,则BAE=_度.【答案】70【详解】ABCD,ABC=35,BCD=B=35,CB平分ACD,BAE=2BCD=70故正确答案为:70.考查题型十五 图形对折问题1(2017 丹阳市月考)如图a是长方形纸带,DEF=25,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的CFE的度数是_【答案】105【解析】由图a知,EFC=155.图b中,EFC=155,则GFC=EFC-EFG=155-25=130.图c中,GFC=130,则CFE=130-25=105. 故答案为:105.2.(2019 道外区期末)如图a是长方
31、形纸带(提示:ADBC),将纸带沿EF折叠成图b,再沿GF折叠成图c(1)若DEF20,则图b中EGB_,CFG_;(2)若DEF20,则图c中EFC_;(3)若DEF,把图c中EFC用表示为_;(4)若继续按EF折叠成图d,按此操作,最后一次折叠后恰好完全盖住EFG,整个过程共折叠了9次,问图a中DEF的度数是多少【答案】(1)40,140;(2)120;(3)1803;(4)18【详解】(1)长方形的对边是平行的,BFEDEF20,EGBBFE+DEF40,FGDEGB40,CFG180FGD140;故答案为:40,140;(2)长方形的对边是平行的,BFEDEF20,图a、b中的CFE180BFE,以下每折叠一次,减少一个BFE,图c中的EFC度数是120;故答案为:120;(3)由(2)中的规律,可得CFE1803故答案为:1803;(4)设图a中DEF的度数是x,由(2)中的规律,可得180(9+1)x0解得:x18故答案为:18考查题型十六 角平分线与实际问题1(2019深圳市文锦中学中考模拟)已知:如图所示,三条公路两两分别相交于点A、B、C,在甲区内求作一点P,使点P到三条公路的距离都相等。【答案】答案见解析【详解】解:点P位置如图所示:
限制150内