中职数学集合的概念的教案.doc

收藏

编号:2574359    类型:共享资源    大小:271.26KB    格式:DOC    上传时间:2020-04-21
8
金币
关 键 词:
数学 集合 聚拢 概念 教案
资源描述:
-` 【课题】1.1 集合的概念 【教学目标】 知识目标: (1)理解集合、元素的概念及其关系,掌握常用数集的字母表示; (2)掌握集合的列举法与描述法,会用适当的方法表示集合. 能力目标: 通过集合语言的学习与运用,培养分类思维和有序思维,从而提升数学思维能力. 情感目标: (1)接受集合语言,经历利用集合语言描述元素与集合间关系的过程,养成规范意识,发展严谨的作风。 (2)感受利用数学知识描述和研究实际问题的乐趣,发展学好数学课程的信心。 (3)经历合作学习的过程,树立团队合作意识。 【教学重点】 集合的表示法. 【教学难点】 集合表示法的选择与规范书写. 【教学设计】 (1)通过生活中的实例导入集合与元素的概念; (2)引导学生自然地认识集合与元素的关系; (3)针对集合不同情况,认识到可以用列举和描述两种方法表示集合,然后再对表示法进行对比分析,完成知识的升华; (4)通过练习,巩固知识. (5)依照学生的认知规律,顺应学生的学习思路展开,自然地层层推进教学. 【教学备品】 教学课件. 【课时安排】 2课时.(90分钟) 【教学过程】 教 学 过 程 教师 行为 学生 行为 教学 意图 时间 *新阶段学习导入语 介绍中职阶段学习数学的必要性,数学的学习内容、学习方法、学习特点等等. 同学们就要开始新的人生阶段了,很高兴可以和大家一起度过这段美好的时光.希望同学们可以通过自己不懈的努力,在毕业后能够找到一个合适的工作,能够独立生存,能够成为为家庭、为企业、为社会做出自我贡献的能工巧匠.当然要达到这样的目的需要你脚踏实地的认真的学做人、学做事,那么现在请让我们从学习开始…… 1.学习——旅程 学习是一段旅程,对知识的探求永无止境,而且这段旅程可以从任何时候开始!未来的成功在现在脚下! 2.老师——导游 与大家一起开始这一段新的旅程、一起分享学习中的快乐、一起体会成长与进步的滋味. 3.目的——运用 我们应当能够理解数学,而且通过运用数学进行沟通和推理,在现实生活中应用数学来解决问题,养成一种数学上的自信心理.请不要害怕学数学,每个人都可以根据自己的能力和实际需要学好自己的数学. 4.准备——必需品 轻松愉快的心情、热情饱满的精神、全力以赴的态度、 踏实努力的行动、科学认真的方法、及时真诚的交流. 回答为什么要学数学?学什么样的数学?怎么学数学? 介绍 说明 讲解 说明 倾听 了解 领会 了解 引领 学生 了解 新阶 段的 数学 学习 特点 重点 是要 树立 学生 的数 学学 习信 心 8 *揭示课题 缤纷多彩的世界,众多繁杂的现象,需要我们去认识.将对象进行分类和归类,加强对其属性的认识,是解决复杂问题的重要手段之一.例如,按照使用功能分类存放物品,在取用时就十分方便. 这就是我们将要研究学习的1.1集合. 介绍 说明 了解 引入 教学 内容 10 *创设情景 兴趣导入 问题 某商店进了一批货,包括:面包、饼干、汉堡、彩笔、水笔、橡皮、果冻、薯片、裁纸刀、尺子.那么如何将这些商品放在指定的篮筐里? 解决 显然,面包、饼干、汉堡、果冻、薯片放在食品篮筐, 彩笔、水笔、橡皮、裁纸刀、尺子放在文具篮筐. 归纳 面包、饼干、汉堡、果冻、薯片组成了食品集合,彩笔、水笔、橡皮、裁纸刀、尺子组成了文具集合. 而面包、饼干、汉堡、果冻、薯片、彩笔、水笔、橡皮、裁纸刀、尺子就是其对应集合的元素. 播放 课件 质疑 引导 分析 观看 课件 思考 自我 建构 从实 际事 例使 学生 自然 的走 向知 识点 启发 学生 体会 集合 概念 15 *动脑思考 探索新知 概念 将某些确定的对象看成一个整体就构成一个集合,简称集.组成集合的对象叫做这个集合的元素. 如大于2并且小于5的自然数组成的集合是由哪些元素组成? 表示 一般采用大写英文字母…表示集合,小写英文字母…表示集合的元素. 拓展 集合中的元素具有下列特点: (1) 互异性:一个给定的集合中的元素都是互不相同的; (2) 无序性:一个给定的集合中的元素排列无顺序; (3) 确定性:一个给定的集合中的元素必须是确定的. 不能确定的对象,不能组成集合.例如,某班跑得快的同学,就不能组成集合. 例1 下列对象能否组成集合: (1)所有小于10的自然数;(2)某班个子高的同学; (3)方程的所有解;(4)不等式的所有解. 解 (1) 由于小于10的自然数包括0、1、2、3、4、5、6、7、8、9十个数,它们是确定的对象,所以它们可以组成集合. (2)由于个子高没有具体的标准,对象是不确定的,因此不能组成集合. (3)方程的解是−1和1,它们是确定的对象,所以可以组成集合. (4)解不等式,得,它们是确定的对象,所以可以组成集合. 类型 由方程的所有解组成的集合叫做这个方程的解集. 由不等式的所有解组成的集合叫做这个不等式的解集. 像方程的解组成的集合那样,由有限个元素组成的集合叫做有限集.像不等式x-2>0的解组成的集合那样,由无限个元素组成的集合叫做无限集. 像平面上与点O的距离为2 cm的所有点组成的集合那样,由平面内的点组成的集合叫做平面点集. 由数组成的集合叫做数集.方程的解集与不等式的解集都是数集. 所有自然数组成的集合叫做自然数集,记作. 所有正整数组成的集合叫做正整数集,记作或. 所有整数组成的集合叫做整数集,记作. 所有有理数组成的集合叫做有理数集,记作. 所有实数组成的集合叫做实数集,记作. 不含任何元素的集合叫做空集,记作.例如,方程x2+1=0的实数解的集合里不含有任何元素,所以这个解集就是空集 关系 元素是集合A的元素,记作(读作“属于A”), 不是集合A的元素,记作(读作“不属于A”). 集合中的对象(元素)必须是确定的.对于任何的一个对象,或者属于这个集合,或者不属于这个集合,二者必居其一. 总结 归纳 讲解 说明 强调 质疑 分析 讲解 提问 归纳 说明 引领 强调 讲解 分析 强调 讲解 理解 领会 记忆 思考 回答 理解 领会 明确 思考 了解 理解 记忆 领会 带领 学生 理解 整体 个体 意义 为后 续学 习做 准备 通过 例题 进一 步领 会元 素确 定性 观察 学生 是否 理解 知识 点 集合 类型 比较 简单 可以 让学 生自 己分 析 强调 各个 数集 的内 涵和 表示 字母 突出 强调 符号 规范 书写 35 *运用知识 强化练习 练习1.1.1 1.用符号“”或“”填空: (1)−3 ,0.5 ,3 ; (2)1.5 ,−5 ,3 ; (3)−0.2 , ,7.21 ; (4)1.5 ,−1.2 , . 2.指出下列各集合中,哪个集合是空集? (1)方程的解集; (2)方程的解集. 提问 巡视 指导 思考 动手 求解 交流 及时 了解 学生 知识 掌握 情况 40 *创设情景 兴趣导入 问题 不大于5的自然数所组成的集合中有哪些元素? 小于5的实数所组成的集合中有哪些元素? 解决 不大于5的自然数所组成的集合中只有0、1、2、3、4、5这6个元素,这些元素是可以一一列举的.而小于5的实数有无穷多个,而且无法一一列举出来,但元素的特征是明显的:(1) 集合的元素都是实数;(2)集合的元素都小于5. 归纳 当集合中元素可以一一列举时,可以用列举的方法表示集合;当集合中元素无法一一列举但元素特征是明显时,可以分析出集合的元素所具有的特征性质,通过对元素特征性质的描述来表示集合. 质疑 引导 讲解 总结 思考 自我 分析 自我 建构 用较 简单 的问 题给 学生 参与 学习 的起 点 引导 学生 得出 结论 45 *动脑思考 探索新知 集合的表示有两种方法: (1)列举法.把集合的元素一一列举出来,写在花括号内,元素之间用逗号隔开.如不大于5的自然数所组成的集合可以表示为. 当集合为无限集或为元素很多的有限集时,在不发生误解的情况下可以采用省略的写法.例如,小于100的自然数集可以表示为,正偶数集可以表示为. (2)描述法.利用元素特征性质来表示集合的方法.在花括号中画一条竖线.竖线的左侧写上集合的代表元素x,并标出元素的取值范围,竖线的右边侧写出元素所具有的特征性质.如小于5的实数所组成的集合可表示为. 如果从上下文能够明显看出集合的元素为实数,可以不标出元素的取值范围.上述集合可以表示为. 为了简便起见,有些集合在使用描述法表示时,可以省略竖线及其左边的代表元素,直接用中文来表示集合的特征性质.例如所有正奇数组成的集合可以表示为{正奇数}. 仔细 分析 讲解 关键 词语 强调 说明 理解 记忆 了解 理解 记忆 了解 带领 学生 总结 集合 两种 表示 方法 特别 注意 强调 写法 的规 范性 50 *巩固知识 典型例题 例2 用列举法表示下列集合: (1)由大于且小于的所有偶数组成的集合; (2)方程的解集. 分析 这两个集合都是有限集.(1)题的元素可以直接列举出来;(2)题的元素需要解方程才能得到. 解(1)集合表示为; (2)解方程得,.故方程解集为. 例3 用描述法表示下列各集合: (1)小于5的整数组成的集合; (2)不等式的解集; (3)所有奇数组成的集合; (4)在直角坐标系中,由x轴上所有的点组成的集合; (5)在直角坐标系中,由第一象限所有的点组成的集合; 分析 第(1)题元素的取值范围是整数,需要标出,其余题目的元素为实数,不需要标出;第(2)题通过解不等式可以得到;第(3)题是奇数都能写成的形式;第(4)题是x轴上点的纵坐标都是0;第(5)题是第一象限内点的横坐标与纵坐标都是正数. 解 (1)小于5的整数组成的集合为. (2)解不等式得,所以不等式的解集为 . (3)所有奇数组成的集合为 . (4)x轴上所有的点组成的集合为 . (5)由第一象限所有的点组成的集合为 . 说明 强调 引领 讲解 说明 引领 分析 强调 含义 说明 观察 思考 主动 求解 观察 思考 求解 领会 思考 求解 通过 例题 进一 步领 会集 合的 表示 注意 观察 学生 是否 理解 知识 点 突出 表示 法的 书写 要规 范 复习 对应 数学 知识 60 *运用知识 强化练习 教材练习1.1.2 1.用列举法表示下列各集合: (1)方程的解集;(2)由小于20的自然数组成的集合;(3)由数1,4,9,16,25组成的集合;(4)所有正奇数组成的集合. 2.用描述法表示下列各集合: (1)大于3的实数所组成的集合;(2)方程的解集; (3)大于5的所有偶数所组成的集合;(4)不等式的解集. 巡视 指导 动手 求解 检验 学习 的效 果 70 *理论升华 整体建构 本次课重点学习了集合的表示法:列举法、描述法,用列举法表示集合,元素清晰明了;用描述法表示集合,元素特征性质直观明确. 因此表示集合时,要针对实际情况,选用合适的方法.例如,不等式(组)的解集,一般采用描述法来表示,方程(组)的解集,一般采用列举法来表示. 总结 归纳 理解 体会 从整 体再 一次 突出 集合 表示 方法 75 *巩固知识 典型例题 例4 用适当的方法表示下列集合: (1)方程x+5=0的解集; (2)不等式3x-7>5的解集; (3)大于3且小于11的偶数组成的集合; (4)不大于5的所有实数组成的集合; 解 (1){−5}; (2){x| x>4} ; (3) {4,6,8,10}; (4) {x| x≤5} . 引领 分析 讲解 说明 领会 思考 求解 进行 综合 题讲 解巩 固所 归纳 的强 化点 80 *运用知识 强化练习 选用适当的方法表示出下列各集合: (1)由大于10的所有自然数组成的集合; (2)方程的解集; (3)不等式的解集; (4)平面直角坐标系中第二象限所有的点组成的集合; (5)方程的解集; (6)不等式组的解集. 提问 巡视 指导 归纳 强调 动手 求解 汇总 交流 及时 了解 学生 知识 掌握 情况 85 *归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么? (1)本次课学了哪些内容? (2)通过本次课的学习,你会解决哪些新问题了? (3)在学习方法上有哪些体会? 引导 提问 回忆 反思 培养 学生 总结 学习 过程 能力 88 *继续探索 活动探究 (1)阅读理解: 教材1.1,学习与训练1.1; (2)书面作业: 教材习题1.1,学习与训练1.1训练题; (3)实践调查: 探究生活中集合知识的应用 说明 记录 90
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:中职数学集合的概念的教案.doc
链接地址:https://www.taowenge.com/p-2574359.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开