四年级上册数学竞赛试题-余数性质(二)全国通用(无答案).doc
《四年级上册数学竞赛试题-余数性质(二)全国通用(无答案).doc》由会员分享,可在线阅读,更多相关《四年级上册数学竞赛试题-余数性质(二)全国通用(无答案).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、5-5-4.余数性质(二)教学目标1. 学习余数的三大定理及综合运用2. 理解弃9法,并运用其解题知识点拨一、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和1,所以23+1639除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23+1942除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。例如:23,16除以5的余数分别是3和1,
2、所以23167除以5的余数等于2,两个余数差312.当余数的差不够减时时,补上除数再减。例如:23,14除以5的余数分别是3和4,23149除以5的余数等于4,两个余数差为35443.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以2316除以5的余数等于313。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以2319除以5的余数等于34除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么与除以m的余数也相同二、弃九法原理在公元前9世
3、纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 四年级 上册 数学 竞赛 试题 余数 性质 全国 通用 答案
限制150内