五年级数奥余数问答(详细分析讲解).doc

收藏

编号:2579095    类型:共享资源    大小:20.31KB    格式:DOC    上传时间:2020-04-21
8
金币
关 键 词:
年级 余数 问答 详细 分析 讲解 讲授
资源描述:
!- 五年级数奥--余数问题(详细分析讲解) 各种与余数有关的整数问题,其中包括求方幂的末位数字,计算具有规律的多位数除以小整数的余数,以及用逐步试算法找出满足多个余数条件的最小数等. 1.号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘? 【分析与解】 因为两个数和的余数同余与余数的和. 有101,126,173,193除以3的余数依次为2,0,2,1. 则101号运动员与126,173,193号运动员依次进行了2,1,0盘比赛,共3盘比赛; 126号运动员与101,173,193号运动员依次进行了2,2,l盘比赛,共5盘比赛; 173号运动员与101,126,193号运动员依次进行了1,2,0盘比赛,共3盘比赛; 193号运动员与101,126,173号运动员依次进行了0,1,0盘比赛,共1盘比赛. 所以,打球盘数最多的运动是126号,打了5盘. 评注:两个数和的余数,同余与余数的和; 两个数差的余数,同余与余数的差; 两个数积的余数,同余与余数的积. 2.自然数 的个位数字是多少? 【分析与解】 我们先计算 的个数数字,再减去1即为所求.(特别的如果是O,那么减去1后的个位数字因为借位为9) 将一个数除以10,所得的余数即是这个数的个位数字.而积的余数,同余余数的积. 有2除以10的余数为2,22除以10的余数为4,222除以10的余数为8,2222除以i0的余数为6; 22222除以i0的余数为 除以10的余数为4, 除以10的余数为8, 除以10的余数为6;…… …… 也就是说,n个2相乘所得的积除以10的余数每4个数一循环. 因为674=16……3,所以 除以10的余数同余与222,即余数为8,所以 除以10的余数为7. 即 的个位数字为7. 评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环. 3.算式7+77+…+ 计算结果的末两位数字是多少? 【分析与解】 我们只用算出7+77+…+7 的和除以100的余数,即为其末两位数字. 7除以100的余数为7,77除以100的余数为49,777除以100的余数为43,7 7 77除以100的余数等于437除以100的余数为1; 而 除以100的余数等于 的余数,即为7,…… 这样我们就得到一个规律 除以100所得的余数,4个数一循环,依次为7,49,43,1. 19904=497……2,所以7+77+…+77… 的和除以100的余数同余. 497(7+49+43+1)+7+49=49756,除以100余56. 所以算式7+77+…+ 计算结果的末两位数字是56. 4.1990…1990除以9的余数是多少? 【分析与解】 能被9整除的数的特征是其数字和能被9整除,如果这个数的数字和除以9余a,那么再减去a而得到的新数一定能被9整除,因而这个新数 加上a后再除以9,所得的余数一定为a,即一个数除以9的余数等于其数字和除以9的余数. 的数字和为20(1+9+9+0)=380,380的数字和又是3+8=11,11除以9的余数为2,所以 除以9的余数是2. 5.将1,2,3,…,30从左往右依次排列成一个51位数,这个数被11除的余数是多少? 【分析与解】 1,2,3,…,30这30个数从左往右依次排列成一个51位数为:123456…910…15 …19202l…25…2930 记个位为第l位,十位为第2位,那么: 它的奇数位数字和为:0+9+8+7+6+…+l+9+8+7+6+…+1+9+7+5+3+l=115: 它的偶数位数字和为:3+ + +8+6+4+2=53; 它的奇数位数字和与偶数位数字和的差为115—53:62.而62除以1l的余数为7. 所以将原来的那个51位数增大4所得到的数123456…910…15…192021…25…2934就是1l倍数,则将123456…910…15…192021…25…2934减去4所得到数除以11的余数为7. 即这个51位数除以11的余数是7. 评注:如果记个位为第1位,十位为第2位,那么一个数除以11的余数为其奇数位数字和A减去偶数位数字和B的差A-B=C,再用C除以1l所得的余数即是原来那个数的余数.(如果减不开可将偶数位数字和B减去奇数位数字和A,求得B-A=C,再求出C除以1l的余数D,然后将11-D即为原来那个数除以11的余数). 如:123456的奇数位数字和为6+4+2=12,偶数位数字和为5+3+1=9,奇数位数字和与偶数位数字和的差为12-9=3,所以123456除以11的余数为3. 又如:654321的奇数位数字和为1+3+5=9,偶数位数字和为2+4+6=12,奇数位数字和减不开偶数位数字和,那么先将12-9=3,显然3除以11的余数为3,然后再用11-3=8,这个8即为654321除以11的余数. 6.一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少? 【分析与解】 这个数即为 ,而整除13的数的特征是将其后三位与前面的数隔开而得到两个新数,将这两个新数做差,这个差为13的倍数. 显然有 能够被13整除,而19946=332……2,即 而 是13的倍数,所以 除以13的余数即为33除以13的余数为7. 有 ,而 ,所以 除以13所得的商每6个数一循环,从左往右依次为2、5、6、4、1、0. 2006=33……2,所以除以 所得商的第200位为5. 除以13的个位即为33除以13的个位,为2. 即商的第200位(从左往右数)数字是5,商的个位数字是2,余数是7. 7.己知:a= .问:a除以13的余数是几? 【分析与解】 因为199119911991能被13整除,而19913=663……2. 有a= =1991199119911 +1991199119911 +199119911991 +1991199119911 +…+1991199119911 +19911991 所以a除以13的余数等于19911991除以13的余数8. 8.有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几? 【分析与解】 我们将这个数加上7,则这个数能被3整除,同时也能被4整除,显然能被12整除,所以原来这个数除以12的余数为12-7=5. 9.某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少? 【分析与解】 我们将这个数减去63,则得到的新数能被247整除,也能被248整除,而相邻的两个整数互质,所以得到的新数能被247248整除,显然能被26整除. 于是将新数加上63除以26的余数等于63除以26的余数为11. 所以这个自然数被26除余数是11. 10.一个自然数除以19余9,除以23余7.那么这个自然数最小是多少? 【分析与解】 这个自然数可以表达为19m+9,也可以表达为23n+7,则有19m+9=23n+7,即23n-19m=2,将未知数系数与常数对19取模,有4n≡2(mod 19). n最小取10时,才有4n≡2(mod 19).所以原来的那个自然数最小为23lO+7=237. 评注:有时往往需要利用不定方程来清晰的表示余数关系,反过来不定方程往往需要利用余数的性质来求解. 11.如图15-l,在一个圆圈上有几十个孔(少于100个).小明像玩跳棋那样从A孔出发沿着逆时针方向, 每隔几个孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好回到4孔.问这个圆圈上共有多少个孔? 【分析与解】 设这个圆圈有n个孔,那么有n除以3余1,n除以5余1.n能被7整除. 则将n-1是3、5的倍数,即是15的倍数,所以n=15t+1,又因为凡是7的倍数,即15t+1=7A,将系数与常数对7取模,有t+1≡0(mod7),所以t取6或6与7的倍数和. 对应孔数为156+l=91或91与105的倍数和,满足题意的孔数只有91. 即这个圆圈上共有91个孔. 12.某住宅区有12家住户,他们的门牌号分别是1,2,3,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号码整除.已知这些电话的首位数字都小于6,并且门牌号码是9的这一家的电话号码也能被13整除,问这一家的电话号码是什么数? 【分析与解】 设这12个连续的自然数为n+1,n+2,n+3,…,n+12,那么有它们依次能被1,2,3,…,12整除,显然有凡能同时被1,2,3,…,12整除.即n为1,2,3,…,12的公倍数. [1,2,3,…,12]=23325711=27720,所以n是27720的倍数,设为27720k.则有第9家的门牌号码为27720k+9为13的倍数,即27720k+9=13A.将系数与常数对13取模有:4k+9≡0(mod 13),所以后可以取l或1与13的倍的和. 有要求n+1,n+2,n+3,…,n+12,为六位数,且首位数字都小于6,所以k只能取14,有7n=2772014= 388080. 那么门牌号码是9的这一家的电话号码是388080+9=388089. 13.有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根? 【分析与解】 设这包牙签有n根,那么加上1根后为n+1根此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包. 所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数. [10,9,8,7,6,51=233257=2520,即n+1是2520的倍数,在满足题下只能是25202=5040,所以n=5039. 即原来一共有牙签5039根. 14.有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少? 【分析与解】 设这个除数为M,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C. 63M=A……a 90M=B……b 130M=C……c a+b+c=25,则(63+90+130)-(a+b+c)=(A+B+C)M,即283-25=258=(A+B+C)M. 所以M是258的约数.258=2343,显然当除数M为2、3、6时,3个余数的和最大为3(2-1)=3,3(3-1)=6,3(6-1)=15,所以均不满足. 而当除数M为432,433,4323时,它除63的余数均是63,所以也不满足. 那么除数M只能是43,它除63,90,130的余数依次为20,4,1,余数的和为25,满足. 显然这3个余数中最大的为20. 15.一个数去除551,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少? 【分析与解】 这个数A除55l,745,1133,1327,所得的余数相同,所以有551,745,1133,1327两两做差而得到的数一定是除数A的倍数. 1327-1133=194,1133-745=388,745-551=194,1327-745=582,1327-551=776,1133-551=582. 这些数都是A的倍数,所以A是它们的公约数,而它们的最大公约数(194,388,194,582,776,582)=194. 所以,这个数最大可能为194. http://www.0354rc.cn/gcsjcectdpbz http://www.szchaoye.com.cn/mfxsqwyd http://www.sdkeller.cn/zxyxx http://www.bjszz.com.cn/nzfhnsyqxs http://www.pljsglj.cn/ysdhsss
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:五年级数奥余数问答(详细分析讲解).doc
链接地址:https://www.taowenge.com/p-2579095.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开