函数与极限重要资料学习知识归纳.doc
*-常量与变量 变量的定义 我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。变量的表示 如果变量的变化是连续的,则常用区间来表示其变化范围。 在数轴上来说,区间是指介于某两点之间的线段上点的全体。区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间axba,b开区间axb(a,b)半开区间axb或axb(a,b或a,b)以上我们所述的都是有限区间,除此之外,还有无限区间: a,+):表示不小于a的实数的全体,也可记为:ax+; (-,b):表示小于b的实数的全体,也可记为:-xb; (-,+):表示全体实数R,也可记为:-x+ 注:其中-和+,分别读作负无穷大和正无穷大,它们不是数,仅仅是记号。邻域 设与是两个实数,且0.满足不等式x-的实数x的全体称为点的邻域,点称为此邻域的中心,称为此邻域的半径。函 数 函数的定义 如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。 注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母f、F表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的. 注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。函数的有界性 如果对属于某一区间I的所有x值总有f(x)M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注意:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-,+)内是有界的.函数的单调性如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1x2时,有 , 则称函数在区间(a,b)内是单调增加的。 如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1x2时,有 , 则称函数在区间(a,b)内是单调减小的。 例题:函数=x2在区间(-,0)上是单调减小的,在区间(0,+)上是单调增加的。函数的奇偶性 如果函数对于定义域内的任意x都满足 =, 则叫做偶函数; 如果函数对于定义域内的任意x都满足 =-, 则叫做奇函数。 注意:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。函数的周期性 对于函数,若存在一个不为零的数l,使得关系式 对于定义域内任何x值都成立,则叫做周期函数,l是的周期。 注:我们说的周期函数的周期是指最小正周期。 例题:函数是以2为周期的周期函数;函数tgx是以为周期的周期函数。反函数反函数的定义 设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数. 这个函数用来表示,称为函数的反函数. 注:由此定义可知,函数也是函数的反函数。反函数的存在定理 若在(a,b)上严格增(减),其值域为 R,则它的反函数必然在R上确定,且严格增(减). 注:严格增(减)即是单调增(减) 例题:y=x2,其定义域为(-,+),值域为0,+).对于y取定的非负值,可求得x=.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-,+)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求x0,则对y0、x=就是y=x2在要求x0时的反函数。即是:函数在此要求下严格增(减). 反函数的性质 在同一坐标平面内,与的图形是关于直线y=x对称的。 例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示: 复合函数的定义 若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。 注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。 例题:函数与函数是不能复合成一个函数的。 因为对于的定义域(-,+)中的任何x值所对应的u值(都大于或等于2), 使都没有定义。初等函数函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a1时,在区间(0,1)的值为负;在区间(-,+)的值为正;在定义域内单调增.幂函数a为任意实数这里只画出部分函数图形的一部分。令a=m/na):当m为偶数n为奇数时,y是偶函数;b):当m,n都是奇数时,y是奇函数;c):当m奇n偶时,y在(-,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在-/2,/2上,并称其为反正弦函数的主值.初等函数 由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数. 例题:是初等函数。 双曲函数及反双曲函数函数的名称函数的表达式函数的图形函数的性质双曲正弦a):其定义域为:(-,+);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-,+);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-,+);b):是奇函数;c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;双曲函数的性质三角函数的性质shx与thx是奇函数,chx是偶函数sinx与tanx是奇函数,cosx是偶函数它们都不是周期函数都是周期函数双曲函数也有和差公式: 反双曲函数 双曲函数的反函数称为反双曲函数. a):反双曲正弦函数 其定义域为:(-,+); b):反双曲余弦函数 其定义域为:1,+); c):反双曲正切函数 其定义域为:(-1,+1);数列的极限数列 若按照一定的法则,有第一个数a1,第二个数a2,依次排列下去,使得任何一个正整数n对应着一个确定的数an,那末,我们称这列有次序的数a1,a2,an,为数列. 数列中的每一个数叫做数列的项。第n项an叫做数列的一般项或通项. 注:我们也可以把数列an看作自变量为正整数n的函数,即:an=,它的定义域是全体正整数数列的极限 一般地,对于数列来说, 若存在任意给定的正数(不论其多么小),总存在正整数N,使得对于nN时的一切不等式 都成立,那末就称常数a是数列的极限,或者称数列收敛于a . 记作:或 注:此定义中的正数只有任意给定,不等式才能表达出与a无限接近的意思。 且定义中的正整数N与任意给定的正数是有关的,它是随着的给定而选定的。 注:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。 数列极限为a的一个几何解释: 将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的邻域即开区间(a-,a+),如下图所示: 因不等式与不等式等价,故当nN时,所有的点都落在开区 间(a-,a+)内,而只有有限个(至多只有N个)在此区间以外。数列的有界性 对于数列,若存在着正数M,使得一切都满足不等式M,则称数列是有界的,若正数M不存在,则可说数列是无界的。 定理:若数列收敛,那末数列一定有界。 注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。 例:数列 1,-1,1,-1,(-1)n+1, 是有界的,但它是发散的。函数的极限函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。函数的极限(分两种情况) a):自变量趋向无穷大时函数的极限 定义: 设函数,若对于任意给定的正数(不论其多么小),总存在着正数X,使得对于适合不等式 的一切x,所对应的函数值都满足不等式 那末常数A就叫做函数当x时的极限,记作:数列的极限的定义函数的极限的定义存在数列与常数A任给一正数0总可找到一正整数N对于nN的所有都满足则称数列当x时收敛于A记:存在函数与常数A任给一正数0总可找到一正数X对于适合的一切x都满足函数当x时的极限为A记:b):自变量趋向有限值时函数的极限 我们先来看一个例子. 例:函数,当x1时函数值的变化趋势如何? 函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个 点,为此我们把x1时函数值的变化趋势用表列出,如下图: 从中我们可以看出x1时,2.而且只要x与1有多接近,就与2有多接近. 或说:只要与2只差一个微量,就一定可以找到一个,当时满足定义: 设函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的(不论其多么小), 总存在正数,当0时, 则称函数当xx0时存在极限,且极限为A,记: 注:在定义中为什么是在去心邻域内呢? 这是因为我们只讨论xx0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的,是否存在正数,使其在去心邻域内的x均满足不等式。用此极限的定义来证明函数的极限为 A,其证明方法是:a):先任取0;b):写出不等式;c):解不等式能否得出去心邻域0,若能;d):则对于任给的0,总能找出,当0时,成立,因此函数极限的运算规则 若已知xx0(或x)时,. 则: 推论: 在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。例题:求解答:例题:求 此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。解答:注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算 规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。无穷大量和无穷小量无穷大量 我们先来看一个例子: 已知函数,当x0时,可知,我们把这种情况称为趋向无穷大。 为此我们可定义如下: 设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数,当 时,成立, 则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x时,无限趋大的定义: 设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当 时,成立, 则称函数当x时是无穷大量,记为:无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数(不论它多么小),总存在正数(或正数M),使得对于适合不等式 (或) 的一切x,所对应的函数值满足不等式, 则称函数当(或x)时 为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。 无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0. 无穷大量与无穷小量是互为倒数关系的.关于无穷小量的两个定理 定理一:如果函数在(或x)时有极限A,则差 是当(或x)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量; c):常数与无穷小量的积也是无穷小量.无穷小量的比较定义:设,都是时的无穷小量,且在x0的去心领域内不为零, a):如果,则称是的高阶无穷小或是的低阶无穷小;b):如果,则称和是同阶无穷小; c):如果,则称和是等价无穷小,记作:(与等价)例:因为,所以当x0时,x与3x是同阶无穷小; 因为,所以当x0时,x2是3x的高阶无穷小; 因为,所以当x0时,sinx与x是等价无穷小等价无穷小的性质 设,且存在,则. 注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。例题:1.求 解答:当x0时,sinaxax,tanbxbx,故:例题: 2.求 解答:(代換只能在積商時使用) 注:問: 代換是否只可以x0時的極限使用?注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子函数的一重要性质连续性在定义函数的连续性之前我们先来学习一个概念增量 设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:x 即:x=x2-x1 增量x可正可负. 我们再来看一个例子:函数在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+x时,函数y相 应地从变到,其对应的增量为: 这个关系式的几何解释如下图: 现在我们可对连续性的概念这样描述:如果当x趋向于零时,函数y对应的增量y也趋向于零, 即: 那末就称函数在点x0处连续函数连续性的定义: 设函数在点x0的某个邻域内有定义,如果有称函数在点x0处连续, 且称x0为函数的的连续点. 下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念: 设函数在区间(a,b内有定义,如果左极限存在且等于, 即:=,那末我们就称函数在点b左连续. 设函数在区间a,b)内有定义,如果右极限存在且等于, 即:=,那末我们就称函数在点a右连续.一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间a,b连续,如果在整个定义域内连续,则称为连续函数。 注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续. 注:连续函数图形是一条连续而不间断的曲线。通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?函数的间断点定义:我们把不满足函数连续性的点称之为间断点.它包括三种情形:a):在x0无定义; b):在xx0时无极限; c):在xx0时有极限但不等于间断点的分类 我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.可去间断点 若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函数不连续原因是:不存在或者是存在但。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点连续函数的性质及初等函数的连续性 连续函数的性质 函数的和、积、商的连续性 我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:a):有限个在某点连续的函数的和是一个在该点连续的函数;b):有限个在某点连续的函数的乘积是一个在该点连续的函数;c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);反函数的连续性若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续例:函数在闭区间上单调增且连续,故它的反函数在闭区间-1,1上 也是单调增且连续的。复合函数的连续性设函数当xx0时的极限存在且等于a,即:.而函数在点u=a连续, 那末复合函数当xx0时的极限也存在且等于.即:例题:求 解答:注:函数可看作与复合而成,且函数在点u=e连续, 因此可得出上述结论。设函数在点x=x0连续,且,而函数在点u=u0连续,那末复合函数 在点x=x0也是连续的初等函数的连续性基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.闭区间上连续函数的性质最大值最小值定理 在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)例:函数y=sinx在闭区间0,2上连续, 则在点x=/2处,它的函数值为1,且大于闭区间0,2上其它各点出的函数值; 则在点x=3/2处,它的函数值为-1,且小于闭区间0,2上其它各点出的函数值介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,在、之间,则在a,b间一定有一个,使推论: 在闭区间连续的函数必取得介于最大值最小值之间的任何值。欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语; 1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 2、现在你不玩命的学,以后命玩你。3、我不知道年少轻狂,我只知道胜者为王。4、不要做金钱、权利的奴隶;应学会做“金钱、权利”的主人。5、什么时候离光明最近?那就是你觉得黑暗太黑的时候。6、最值得欣赏的风景,是自己奋斗的足迹。7、压力不是有人比你努力,而是那些比你牛几倍的人依然比你努力。
收藏
编号:2581969
类型:共享资源
大小:387.70KB
格式:DOC
上传时间:2020-04-22
8
金币
- 关 键 词:
-
函数
极限
重要
首要
资料
学习
知识
归纳
- 资源描述:
-
*-
常量与变量
变量的定义
我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。
注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。
变量的表示
如果变量的变化是连续的,则常用区间来表示其变化范围。
在数轴上来说,区间是指介于某两点之间的线段上点的全体。
区间的名称
区间的满足的不等式
区间的记号
区间在数轴上的表示
闭区间
a≤x≤b
[a,b]
开区间
a<x<b
(a,b)
半开区间
a<x≤b或a≤x<b
(a,b]或[a,b)
以上我们所述的都是有限区间,除此之外,还有无限区间:
[a,+∞):表示不小于a的实数的全体,也可记为:a≤x<+∞;
(-∞,b):表示小于b的实数的全体,也可记为:-∞<x<b;
(-∞,+∞):表示全体实数R,也可记为:-∞<x<+∞
注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。
邻域
设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
函 数
函数的定义
如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y叫做因变量。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示.这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的.
注:如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。
函数的有界性
如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。
注意:一个函数,如果在其整个定义域内有界,则称为有界函数
例题:函数cosx在(-∞,+∞)内是有界的.
函数的单调性
如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有
,
则称函数在区间(a,b)内是单调增加的。
如果函数在区间(a,b)内随着x增大而减小,即:对于(a,b)内任意两点x1及x2,当x1<x2时,有
,
则称函数在区间(a,b)内是单调减小的。
例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。
函数的奇偶性
如果函数对于定义域内的任意x都满足
=,
则叫做偶函数;
如果函数对于定义域内的任意x都满足
=-,
则叫做奇函数。
注意:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。
函数的周期性
对于函数,若存在一个不为零的数l,使得关系式
对于定义域内任何x值都成立,则叫做周期函数,l是的周期。
注:我们说的周期函数的周期是指最小正周期。
例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。
反函数
反函数的定义
设有函数,若变量y在函数的值域内任取一值y0时,变量x在函数的定义域内必有一值x0与之对应,即,那末变量x是变量y的函数.
这个函数用来表示,称为函数的反函数.
注:由此定义可知,函数也是函数的反函数。
反函数的存在定理
若在(a,b)上严格增(减),其值域为 R,则它的反函数必然在R上确定,且严格增(减).
注:严格增(减)即是单调增(减)
例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反函数。如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).
反函数的性质
在同一坐标平面内,与的图形是关于直线y=x对称的。
例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x对称的。如右图所示:
复合函数的定义
若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域内,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。
注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。
例题:函数与函数是不能复合成一个函数的。
因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),
使都没有定义。
初等函数
函数名称
函数的记号
函数的图形
函数的性质
指数函数
a):不论x为何值,y总为正数;
b):当x=0时,y=1.
对数函数
a):其图形总位于y轴右侧,并过(1,0)点
b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域内单调增.
幂函数
a为任意实数
这里只画出部分函数图形的一部分。
令a=m/n
a):当m为偶数n为奇数时,y是偶函数;
b):当m,n都是奇数时,y是奇函数;
c):当m奇n偶时,y在(-∞,0)无意义.
三角函数
(正弦函数)
这里只写出了正弦函数
a):正弦函数是以2π为周期的周期函数
b):正弦函数是奇函数且
反三角函数
(反正弦函数)
这里只写出了反正弦函数
a):由于此函数为多值函数,因此我们此函数值限制在[-π/2,π/2]上,并称其为反正弦函数的主值.
初等函数
由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.
例题:是初等函数。
双曲函数及反双曲函数
函数的名称
函数的表达式
函数的图形
函数的性质
双曲正弦
a):其定义域为:(-∞,+∞);
b):是奇函数;
c):在定义域内是单调增
双曲余弦
a):其定义域为:(-∞,+∞);
b):是偶函数;
c):其图像过点(0,1);
双曲正切
a):其定义域为:(-∞,+∞);
b):是奇函数;
c):其图形夹在水平直线y=1及y=-1之间;在定域内单调增;
双曲函数的性质
三角函数的性质
shx与thx是奇函数,chx是偶函数
sinx与tanx是奇函数,cosx是偶函数
它们都不是周期函数
都是周期函数
双曲函数也有和差公式:
反双曲函数
双曲函数的反函数称为反双曲函数.
a):反双曲正弦函数 其定义域为:(-∞,+∞);
b):反双曲余弦函数 其定义域为:[1,+∞);
c):反双曲正切函数 其定义域为:(-1,+1);
数列的极限
数列
若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数an,那末,我们称这列有次序的数a1,a2,…,an,…为数列.
数列中的每一个数叫做数列的项。第n项an叫做数列的一般项或通项.
注:我们也可以把数列an看作自变量为正整数n的函数,即:an=,它的定义域是全体正整数
数列的极限
一般地,对于数列来说,
若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式
都成立,那末就称常数a是数列的极限,或者称数列收敛于a .
记作:或
注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。
且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。
注:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。
数列极限为a的一个几何解释:
将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:
因不等式与不等式等价,故当n>N时,所有的点都落在开区
间(a-ε,a+ε)内,而只有有限个(至多只有N个)在此区间以外。
数列的有界性
对于数列,若存在着正数M,使得一切都满足不等式││≤M,则称数列是有界的,若正数M不存在,则可说数列是无界的。
定理:若数列收敛,那末数列一定有界。
注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。
例:数列 1,-1,1,-1,…,(-1)n+1,… 是有界的,但它是发散的。
函数的极限
函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。
函数的极限(分两种情况)
a):自变量趋向无穷大时函数的极限
定义:
设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式 的一切x,所对应的函数值都满足不等式
那末常数A就叫做函数当x→∞时的极限,记作:
数列的极限的定义
函数的极限的定义
存在数列与常数A
任给一正数ε>0
总可找到一正整数N
对于n>N的所有
都满足<ε
则称数列当x→∞时收敛于A
记:
存在函数与常数A
任给一正数ε>0
总可找到一正数X
对于适合的一切x
都满足
函数当x→∞时的极限为A
记:
b):自变量趋向有限值时函数的极限
我们先来看一个例子.
例:函数,当x→1时函数值的变化趋势如何?
函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个
点,为此我们把x→1时函数值的变化趋势用表列出,如下图:
从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.
或说:只要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ
定义:
设函数在某点x0的某个去心邻域内有定义,且存在数A,如果对任意给定的ε(不论其多么小),
总存在正数δ,当0<<δ时,<ε
则称函数当x→x0时存在极限,且极限为A,记:
注:在定义中为什么是在去心邻域内呢?
这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。
此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域内的x均满足不等式。
用此极限的定义来证明函数的极限为 A,其证明方法是:
a):先任取ε>0;
b):写出不等式<ε;
c):解不等式能否得出去心邻域0<<δ,若能;
d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此
函数极限的运算规则
若已知x→x0(或x→∞)时,.
则:
推论:
在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。
例题:求
解答:
例题:求
此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。
解答:
注:通过此例题我们可以发现:当分式的分子和分母都没有极限时就不能运用商的极限的运算
规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。
无穷大量和无穷小量
无穷大量
我们先来看一个例子:
已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。
为此我们可定义如下:
设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当
时,成立,
则称函数当时为无穷大量。
记为:(表示为无穷大量,实际它是没有极限的)
同样我们可以给出当x→∞时,无限趋大的定义:
设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当
时,成立,
则称函数当x→∞时是无穷大量,记为:
无穷小量
以零为极限的变量称为无穷小量。
定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式
(或)
的一切x,所对应的函数值满足不等式,
则称函数当(或x→∞)时 为无穷小量.
记作:(或)
注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。
无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.
无穷大量与无穷小量是互为倒数关系的.
关于无穷小量的两个定理
定理一:如果函数在(或x→∞)时有极限A,则差
是当(或x→∞)时的无穷小量,反之亦成立。
定理二:无穷小量的有利运算定理
a):有限个无穷小量的代数和仍是无穷小量;
b):有限个无穷小量的积仍是无穷小量;
c):常数与无穷小量的积也是无穷小量.
无穷小量的比较
定义:设α,β都是时的无穷小量,且β在x0的去心领域内不为零,
a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;
b):如果,则称α和β是同阶无穷小;
c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)
例:因为,所以当x→0时,x与3x是同阶无穷小;
因为,所以当x→0时,x2是3x的高阶无穷小;
因为,所以当x→0时,sinx与x是等价无穷小
等价无穷小的性质
设,且存在,则.
注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。
例题:1.求
解答:当x→0时,sinax∽ax,tanbx∽bx,故:
例题: 2.求
解答:(代換只能在積商時使用)
注:
問: 代換是否只可以x→0時的極限使用?
注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子
函数的一重要性质——连续性
在定义函数的连续性之前我们先来学习一个概念——增量
设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x
即:△x=x2-x1 增量△x可正可负.
我们再来看一个例子:函数在点x0的邻域内有定义,当自变量x在领域内从x0变到x0+△x时,函数y相
应地从变到,其对应的增量为:
这个关系式的几何解释如下图:
现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,
即:
那末就称函数在点x0处连续
函数连续性的定义:
设函数在点x0的某个邻域内有定义,如果有称函数在点x0处连续,
且称x0为函数的的连续点.
下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:
设函数在区间(a,b]内有定义,如果左极限存在且等于,
即:=,那末我们就称函数在点b左连续.
设函数在区间[a,b)内有定义,如果右极限存在且等于,
即:=,那末我们就称函数在点a右连续.
一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域内连续,则称为连续函数。
注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.
注:连续函数图形是一条连续而不间断的曲线。
通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?
函数的间断点
定义:我们把不满足函数连续性的点称之为间断点.
它包括三种情形:a):在x0无定义;
b):在x→x0时无极限;
c):在x→x0时有极限但不等于
间断点的分类
我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.
可去间断点
若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函数不连续原因是:不存在或者是存在但≠。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点
连续函数的性质及初等函数的连续性
连续函数的性质
函数的和、积、商的连续性
我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:
a):有限个在某点连续的函数的和是一个在该点连续的函数;
b):有限个在某点连续的函数的乘积是一个在该点连续的函数;
c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);
反函数的连续性
若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续
例:函数在闭区间上单调增且连续,故它的反函数在闭区间[-1,1]上
也是单调增且连续的。
复合函数的连续性
设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a连续,
那末复合函数当x→x0时的极限也存在且等于.
即:
例题:求
解答:
注:函数可看作与复合而成,且函数在点u=e连续,
因此可得出上述结论。
设函数在点x=x0连续,且,而函数在点u=u0连续,那末复合函数
在点x=x0也是连续的
初等函数的连续性
基本初等函数在它们的定义域内都是连续的;一切初等函数在其定义域内也都是连续的.
闭区间上连续函数的性质
最大值最小值定理
在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)
例:函数y=sinx在闭区间[0,2π]上连续,
则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]上其它各点出的函数值;
则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函数值
介值定理
在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,μ在α、β之间,则在[a,b]间一定有一个ξ,使
推论:
在闭区间连续的函数必取得介于最大值最小值之间的任何值。
欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。赠语; 1、如果我们做与不做都会有人笑,如果做不好与做得好还会有人笑,那么我们索性就做得更好,来给人笑吧! 2、现在你不玩命的学,以后命玩你。3、我不知道年少轻狂,我只知道胜者为王。4、不要做金钱、权利的奴隶;应学会做“金钱、权利”的主人。5、什么时候离光明最近?那就是你觉得黑暗太黑的时候。6、最值得欣赏的风景,是自己奋斗的足迹。7、压力不是有人比你努力,而是那些比你牛几倍的人依然比你努力。
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。