华师大版初一年级数学(上)期末练习情况总结复习资料考点分析情况总结及其章节训练试题.doc
,.华师大版七年级数学(上)期末复习提纲-知识点总结及单章练习题第一章略第二章 有理数1负数:像-5,-2,-237,-3.6这样的数,这是一种新数,叫做负数;正数:过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数注意:0既不是正数,也不是负数2正整数、零和负整数统称整数,正分数和负分数统称分数整数和分数统称有理数3数轴:规定了原点、正方向和单位长度的直线叫做数轴4在数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于负数5相反数:只有正负号不同的两个数称互为相反数;在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等;规定:0的相反数是0;我们通常把在一个数前面添上“-”号,表示这个数的相反数;在一个数前面添上“+”号,表示这个数本身6绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值.记作|a|;一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数;任意有理数a,总有|a|07两个负数,绝对值大的反而小8有理数的加法法则:1)同号两数相加,取相同的正负号,并把绝对值相加;2)绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3)互为相反数的两个数相加得0;4)一个数同0相加,仍得这个数.注意一个有理数由正负号和绝对值两部分组成,所以进行加法运算时,应注意确定和的正负号与绝对值9加法交换律:两个数相加,交换加数的位置,和不变a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.( a + b )+ c = a + ( b + c )10有理数减法法则:减去一个数,等于加上这个数的相反数11有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得012乘法交换律: 两个数相乘,交换因数的位置,积不变abba.乘法结合律: 三个数相乘,先把前两个数相积乘,或者先把后两个数相乘,积不变.(ab)ca(bc).分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(bc)abac几个不等于0的数相乘,积的正负号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正几个数相乘,有一个因数为0,积就为013倒数:乘积是1的两个数互为倒数;除以一个数等于乘上这个数的倒数.注意:0不能作除数. 有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数,都得014求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫作底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也可读作a的n次幂.正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数15科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法16有理数混合运算的运算顺序规定如下:1)先算乘方,再算乘除,最后算加减;2)同级运算,按照从左至右的顺序进行;3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的17一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字18小结一、知识结构二、概括1数轴是理解有理数概念与运算的重要工具,学习本章要善于结合数轴理解有理数的有关概念(如相反、绝对值),会利用数轴比较两个有理数的大小.2在有理数的运算中,要特别注意符号问题,提高运算的正确性,还要善于灵活运用运算律简化运算.3在实际运算中经常会遇到近似数,要注意按要求的精确度进行计算和保留结果.对较大的数用科学记数法表示既方便,又容易体现对有效数字的要求第三章 整式的加减1代数式:数和字母用运算符号连结所成的式子,称为代数式注意:1)代数式中出现的乘号,通常写作“”或省略不写,如6b常写作6b或6b;2)数字与字母相乘时,数字写在字母前面,如6b一般不写作b6;3)除法运算写成分数形式;4)数与字母相乘,带分数要化假分数;5)括号与括号相乘可省略括号2列代数式:把问题中与数量有关的词语用代数式表示出来,即列出代数式3代数式的值:用数值代替代数式里的字母,按照代数式中的运算计算得出的结果,叫做代数式的值4单项式:由数与字母的乘积组成的代数式叫做单项式;单独一个数或一个字母也是单项式单项式中的数字因数叫做这个单项式的系数一个单项式中,所有字母的指数的和叫做这个单项式的次数注意:1)当一个单项式的系数是1或1时,“1”通常省略不写;2)单项式的系数是带分数时,通常写成假分数5多项式:几个单项式的和叫做多项式在多项式中,项:每个单项式叫做多项式的项其中,不含字母的项,叫做常数项一个多项式含有几项,就叫几项式多项式里,次数最高项的次数,就是这个多项式的次数注意:1)多项式的次数不是所有项的次数之和;2)多项式的每一项都包括它前面的正负号6单项式与多项式统称整式7降幂排列:按某一字母的指数从大到小的顺序排列,叫做这个多项式按该字母的降幂排列升幂排列:按某一字母的指数从小到大的顺序排列,叫做这个多项式按该字母的升幂排列注意:1)重新排列多项式时,每一项一定要连同它的符号一起移动;2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列8同类项:所含字母相同,并且相同字母的指数也相等的项叫做同类项所有的常数项都是同类项9合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变10去括号法则:括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都不改变正负号;括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都改变正负号11添括号法则:所添括号前面是“”号,括到括号里的各项都不改变正负号;所添括号前面是“”号,括到括号里的各项都改变正负号12整式加减的一般步骤是:先去括号,再合并同类项一、 知识结构二、 概括1整式中,只含一项的是单项式,否则是多项式分母中含有字母的代数式不是整式,当然也不是单项式或多项式2单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数3单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号4去(添)括号时,要特别注意括号前面是“”号的情形:去括号时,括号里各项都改变符号;添括号时,括到括号里的各项都改变符号第四章 图形的初步认识11)柱体:圆柱,棱柱(三棱柱,四棱柱,);2)锥体:圆锥,棱锥(三棱锥,四棱锥,);3)球体多面体:围成立体图形的面是平的面,像这样的立体图形,又称为多面体2视图:从三个不同的方向看一个物体,一般是从正面、上面和侧面,然后描绘三张所看到的图,即视图从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图(左视图,右视图)3表面展开图:多面体是由平面图形围成的立体图形,沿着多面体的棱将它剪开,可以把多面体的表面变成一个平面图形4圆是由曲线围成的封闭图形. 多边形是由线段围成的封闭图形一个n边形至少可以分割成n-2个三角形5射线:线段向一方无限延伸所形成的图形叫做射线;直线:把线段向两方无限延伸所形成的图形就是直线表示方法:点:用一个大写字母表示;线段:用两个端点的大写字母表示;或用一个小写字母表示;射线:用端点和射线上任意一点的两个大写字母表示;或用一个小写字母表示;直线:用直线上任意两点的大写字母表示;或用一个小写字母表示公理1:两点之间,直段最短此时线段的长度,就是这两点间的距离公理2:经过两点有一条直线,并且只有一条直线6线段的中点:把一条险段分成两条相等线段的点,叫做这条线段的中点7角:由两条有公共端点的射线组成的图形可以看成是由一条射线绕着它的端点旋转而成的图形.角的顶点:射线的端点;角的始边:起始位置的射线;角的终边:终止位置的射线表示方法:(1)用两边和顶点的三个大写字母表示(顶点字母在中间);(2)用顶点的大写字母表示;(3)用阿拉伯数字表示;(4)用小写的希腊字母表示8平角:绕着端点旋转到角的终边和始边成一直线所成的角;周角:绕着端点旋转到终边和始边重合所成的角91周角=360;1平角=180;1=60;1=6010角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线11互余:两个角的和等于90,就说这两个角互为余角,简称互余互补:两个角的和等于一平角(180),就说这两个角互为补角,简称互补同角(等角)的余角相等;同角(等角)的补角相等图1两直线相交形成了1、2、3和4(如图1),我们把其中的1和3叫做对顶角,2和4也是对顶角对顶角相等12互相垂直:直线AB与直线CD相交,交点为O,当所构成的四个角中有一个为直角时,其他三个角也都成为直角,此时,直线AB、CD互相垂直,记作“ABCD”,他们的交点O叫做垂足在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直若线段AB垂直于直线BC,垂足为B线段AB叫做点A到直线BC的垂线段,它的长度就是点A到直线BC的距离直线外一点与直线上各点连结而得到的所有线段中,垂线段最短13同位角,内错角,同旁内角(见教材P164-165)14平行线:在同一平面内不相交的两条直线叫做平行线在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行经过已知直线外一点,有且只有一条直线与已知直线平行如果两条直线都和第三条直线平行,那么这两条直线也互相平行15平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行垂直于同一条直线的两条直线互相平行16平行线的性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补知识框图第五章 数据的收集与表示1频数:表示每个对象出现的次数,频率:表示每个对象出现的次数与总次数的比值(或者百分比)2条形统计图是用宽度相同的条形的高低或长短来表示数据特征的统计图,它们可以直观地反映出数据的数量特征。如果有两个研究对象,常常把两个对象的响应数据并列表示在同一张条形统计图中扇形统计图是用圆的面积表示一组数据的整体,用圆中扇形面积与圆面积的比来表示各组成部分在总体中所占的百分比的统计图。扇形统计图可以直观地反映出各部分数量在总量中所占的份额折线统计图是用折线表示数量变化规律的统计图。如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化3总结一、 知识结构利用数据解决简单实际问题的过程如下:提出问题收集数据整理和描述数据分析数据回答问题频数频率统计图表初一数学科总复习第一章 有理数一、 知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。基础知识:1、正数(position number):大于0的数叫做正数。2、负数(negation number):在正数前面加上负号“-”的数叫做负数。3、0既不是正数也不是负数。4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。数轴满足以下要求:(1) 在直线上任取一个点表示数0,这个点叫做原点(origin);(2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3) 选取适当的长度为单位长度。6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。表达式:a(b+c)=ab+ac11、倒数 1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。14、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。15、科学技术法:把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数(即0a0 ab;(4) 做商法:a/b1,b0 ab.二、 基础训练选择题1、下列运算中正确的是( ).A. a2a3=a6 B. =2 C. |(3-)|=3 D. 32=-92、下列各判断句中错误的是( ) A.数轴上原点的位置可以任意选定B.数轴上与原点的距离等于个单位的点有两个C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。3、是有理数,若且,下列说法正确的是( ) A.一定是正数 B.一定是负数 C.一定是正数 D.一定是负数 4、两数相加,如果比每个加数都小,那么这两个数是( ) A.同为正数 B.同为负数 C.一个正数,一个负数 D.0和一个负数 5、两个非零有理数的和为零,则它们的商是() A.0 B.-1 C.+1 D.不能确定 6、一个数和它的倒数相等,则这个数是( ) A.1 B.-1 C. 1 D. 1和0 7、如果|a|=-a,下列成立的是( ) A.a0 B.a0或a=0 D.a0或a=0 8、(-2)11+(-2)10的值是( )A.-2 B.(-2)21 C.0 D.-2109、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶 10、在下列说法中,正确的个数是( )任何一个有理数都可以用数轴上的一个点来表示 数轴上的每一个点都表示一个有理数 任何有理数的绝对值都不可能是负数 每个有理数都有相反数 A、1 B、2 C、3 D、411、如果一个数的相反数比它本身大,那么这个数为( )A、正数 B、负数C、整数 D、不等于零的有理数12、下列说法正确的是( ) A、几个有理数相乘,当因数有奇数个时,积为负;B、几个有理数相乘,当正因数有奇数个时,积为负;C、几个有理数相乘,当负因数有奇数个时,积为负;D、几个有理数相乘,当积为负数时,负因数有奇数个;13、如果零上记作,那么零下记作()、14、若与互为相反数,则等于()、填空题 1、在有理数-7,-(-1.43),0,-1.7321中,是整数的有_是负分数的有_。2、一般地,设a是一个正数,则数轴上表示数a的点在原点的_边,与原点的距离是_个单位长度;表示数-a的点在原点的_边,与原点的距离是_个单位长度。3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_;用科学记数法表示一个n位整数,其中10的指数是_. 4、实数a、b、c在数轴上的位置如图:化简|ab|+|bc|-|ca|. 5、绝对值大于1而小于4的整数有_,其和为_. 6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=_.7、1-2+3-4+5-6+2001-2002的值是_. 8、若(a-1)2+|b+2|=0,那么a+b=_. 9、平方等于它本身的有理数是_,立方等于它本身的有理数是_. 10、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0精确到 位。 11、正数a的绝对值为_;负数b的绝对值为_12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大 13、在数轴上表示两个数, 的数总比 的大。(用“左边”“右边”填空)14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是_。15、温度由下降后,结果可记为16、1/3的相反数是_,绝对值是_,倒数是_.三、强化训练1、计算:1+2+3+2002+2003=_.2、已知:若(a,b均为整数)则a+b= 3、观察下列等式,你会发现什么规律:,。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来 4、已知,则_5、已知是整数,是一个偶数,则a是 (奇,偶)6、已知1+2+3+31+32+33=1733,求1-3+2-6+3-9+4-12+31-93+32-96+33-99的值。7、在数1,2,3,50前添“+”或“”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。8、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。9、已知|x+1|=4,(y+2)2=4,求x+y的值。10、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6(1) (1) 星期三收盘时,每股是多少元?(2) (2) 本周内最高价是每股多少元?最低价是多少元?(3) 已知买进股票是付了1.5的手续费,卖出时需付成交额1.5的手续费和1的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?(4) 以买进的股价为0点,用折线统计图表示本周该股的股价情况。第二章 整式的加减总复习【知识点定义】1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式单独一个数或一个字母也是单项式2、系数单项式中的数字因数叫做这个单项式的系数3、单项式的次数一个单项式中,所有字母的指数的和叫做这个单项式的次数4、多项式几个单项式的和叫做多项式5、多项式的项在多项式中,每个单项式叫做多项式的项6是常数项6、常数项多项式中,不含字母的项叫做常数项7、多项式的次数多项式里,次数最高的项的次数,就是这个多项式的次数8、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列9、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列10、整式单项式和多项式统称整式。11、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项常数项都是同类项12、合并同类项把多项式中的同类项合并成一项,叫做合并同类项合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变13、去括号法则括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“”号,把括号和它前面的“”号去掉,括号里各项都改变符号例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“”号,括到括号里的各项都改变符号例:m+2xy+z5=m+(2xy)(z+5)15、整式的加减整式加减的一般步骤:1.如果遇到括号,按去括号法则先去括号;2.合并同类项16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形第三章一元一次方程综合复习指导【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程. 3方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解. 注: 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么=三、移项法则:把等式一边的某项变号后移到另一边,叫做移项四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变五、解方程的一般步骤1、 去分母(方程两边同乘各分母的最小公倍数)2、去括号(按去括号法则和分配律)3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4、合并(把方程化成ax = b (a0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).六、用方程思想解决实际问题的一般步骤1、 审:审题,分析题中已知什么,求什么,明确各数量之间的关系2.、设:设未知数(可分直接设法,间接设法)3、 列:根据题意列方程4、 解:解出所列方程5、 检:检验所求的解是否符合题意6、 答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1、 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现. (2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现.2、 等积变形问题: “等积变形”是以形状改变而体积不变为前提.常用等量关系为: 形状面积变了,周长没变;原料体积成品体积.3、劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4、 数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示.5、工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率工作时间 6、行程问题: (1)行程问题中的三个基本量及其关系: 路程=速度时间. (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题. 7、商品销售问题有关关系式: 商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率8、储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税 利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%)【典型例题】一、一元一次方程的有关概念例1.一个一元一次方程的解为2,请写出这个一元一次方程 .分析与解:这是一道开放性试题,答案不唯一.如x=1,x-2=0等等.【点拨】 解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成.二、一元一次方程的解例2.若关于的一元一次方程的解是,则的值是( )A B1 C D0分析:根据方程解的定义,一元一次方程的解能使方程左、右两边的值相等,把x=-1代入原方程得到一个关于k的一元一次方程,解这个方程即可得到k的值.解:把x=-1代入中得,-=1,解得:k=1.答案为B.【点拨】根据方程解的概念,直接把方程的解代入即可.三、一元一次方程的解法例3.如果,那么等于( )(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.例4. (x-1)-3-3=3分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生.解:去大括号,得 (x-1)-3-2=3去中括号,得(x-1)-3-2=3去小括号,得x-3-2=3移项,得x=+3+2+3合并,得x=系数化为1,得:x = 17四、一元一次方程的实际应用例5.某高校共有5个大餐厅和2个小餐厅经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由分析:可以先设1个小餐厅可供名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y)名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2(1680-2y)+y=2280解:(1)设1个小餐厅可供名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)答:(略)(2)因为,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐【点拨】第问属于直接列方程解应用题,而第问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可.例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?分析:根据利润=售价-进价与售价=标价折扣率这两个等量关系以及按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,就可以列出一元一次方程.解:设该工艺品每件的进价是元,标价是(45+x)元.依题意,得: 8(45+x)0.85-8x=(45+x-35)12-12x解得:x=155(元)所以45+x=200(元) 答:(略). 【点拨】这是销售问题,在解答销售问题时把握下列关系即可:商品售价=商品标价折扣率商品利润=商品售价商品进价=商品标价折数商品进价商品利润率=100%例7.(2006益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?分析:这是一道情景对话问题,具有一定的新颖性.解答这类问题的关键是要从对话中捕捉等量关系.从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5)=95元.根据上述等量关系可以得到相应的方程.解:设笔记本每本x元,则钢笔每支为(x+2)元,据题意得10(x+2)+15x=100-5解得,x=3(元)所以x+2=5(元)答:(略).【点拨】在情景问题应用中,捕捉等量关系是关键.第四章 图形认识初步【知识点归纳】一、 多姿多彩的图形1. 从实物中抽象出的各种图形统称为几何图形。2. 点、线、面、体A 点:线和线相交的地方。B 线:面和面相交的地方,线可分为直线、射线、线段C 体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。D 面:包围着体的是面,面可分为平的面、曲的面。二、 直线、射线、线段1.两点确定一条直线2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共
收藏
编号:2582328
类型:共享资源
大小:890.78KB
格式:DOC
上传时间:2020-04-22
8
金币
- 关 键 词:
-
师大
初一
年级
数学
期末
练习
情况
总结
复习资料
考点
分析
及其
章节
训练
试题
- 资源描述:
-
,.
华师大版七年级数学(上)期末复习提纲
----知识点总结及单章练习题
第一章略
第二章 有理数
1.负数:像-5,-2,-237,-3.6这样的数,这是一种新数,叫做负数;正数:过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数.注意:0既不是正数,也不是负数.
2.正整数、零和负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.
.
3.数轴:规定了原点、正方向和单位长度的直线叫做数轴.
4.在数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于负数.
5.相反数:只有正负号不同的两个数称互为相反数;在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等;规定:0的相反数是0;我们通常把在一个数前面添上“-”号,表示这个数的相反数;在一个数前面添上“+”号,表示这个数本身.
6.绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值.记作|a|;
一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数;
任意有理数a,总有|a|≥0.
7.两个负数,绝对值大的反而小.
8.有理数的加法法则:
1)同号两数相加,取相同的正负号,并把绝对值相加;2)绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3)互为相反数的两个数相加得0;4)一个数同0相加,仍得这个数.
注意
一个有理数由正负号和绝对值两部分组成,所以进行加法运算时,应注意确定和的正负号与绝对值.
9.加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a.
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
( a + b )+ c = a + ( b + c ).
10.有理数减法法则:减去一个数,等于加上这个数的相反数.
11.有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.
12.乘法交换律: 两个数相乘,交换因数的位置,积不变.ab=ba.
乘法结合律: 三个数相乘,先把前两个数相积乘,或者先把后两个数相乘,积不变.
(ab)c=a(bc).
分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
a(b+c)=ab+ac.
几个不等于0的数相乘,积的正负号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一个因数为0,积就为0.
13.倒数:乘积是1的两个数互为倒数;除以一个数等于乘上这个数的倒数.
注意:0不能作除数.
有理数的除法法则:
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
14.求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫作底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也可读作a的n次幂.
正数的任何次幂都是正数;
负数的奇次幂是负数,负数的偶次幂是正数.
15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.
16.有理数混合运算的运算顺序规定如下:
1)先算乘方,再算乘除,最后算加减;
2)同级运算,按照从左至右的顺序进行;
3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.
17.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字.
18.小结
一、知识结构
二、概括
1.数轴是理解有理数概念与运算的重要工具,学习本章要善于结合数轴理解有理数的有关概念(如相反、绝对值),会利用数轴比较两个有理数的大小.
2.在有理数的运算中,要特别注意符号问题,提高运算的正确性,还要善于灵活运用运算律简化运算.
3.在实际运算中经常会遇到近似数,要注意按要求的精确度进行计算和保留结果.对较大的数用科学记数法表示既方便,又容易体现对有效数字的要求.
第三章 整式的加减
1.代数式:数和字母用运算符号连结所成的式子,称为代数式.
注意:1)代数式中出现的乘号,通常写作“”或省略不写,如6b常写作6b或6b;2)数字与字母相乘时,数字写在字母前面,如6b一般不写作b6;3)除法运算写成分数形式;4)数与字母相乘,带分数要化假分数;5)括号与括号相乘可省略括号.
2.列代数式:把问题中与数量有关的词语用代数式表示出来,即列出代数式.
3.代数式的值:用数值代替代数式里的字母,按照代数式中的运算计算得出的结果,叫做代数式的值.
4.单项式:由数与字母的乘积组成的代数式叫做单项式;单独一个数或一个字母也是单项式.
单项式中的数字因数叫做这个单项式的系数.
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
注意:1)当一个单项式的系数是1或-1时,“1”通常省略不写;
2)单项式的系数是带分数时,通常写成假分数.
5.多项式:几个单项式的和叫做多项式.在多项式中,项:每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.
注意:1)多项式的次数不是所有项的次数之和;
2)多项式的每一项都包括它前面的正负号.
6.单项式与多项式统称整式.
7.降幂排列:按某一字母的指数从大到小的顺序排列,叫做这个多项式按该字母的降幂排列.
升幂排列:按某一字母的指数从小到大的顺序排列,叫做这个多项式按该字母的升幂排列.
注意:1)重新排列多项式时,每一项一定要连同它的符号一起移动;
2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列.
8.同类项:所含字母相同,并且相同字母的指数也相等的项叫做同类项.所有的常数项都是同类项.
9.合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.
10.去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变正负号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变正负号.
11.添括号法则:所添括号前面是“+”号,括到括号里的各项都不改变正负号;所添括号前面是“-”号,括到括号里的各项都改变正负号.
12.整式加减的一般步骤是:先去括号,再合并同类项.
一、 知识结构
二、 概括
1.整式中,只含一项的是单项式,否则是多项式.分母中含有字母的代数式不是整式,当然也不是单项式或多项式.
2.单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数.
3.单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号.
4.去(添)括号时,要特别注意括号前面是“-”号的情形:去括号时,括号里各项都改变符号;添括号时,括到括号里的各项都改变符号.
第四章 图形的初步认识
1.1)柱体:圆柱,棱柱(三棱柱,四棱柱,…);2)锥体:圆锥,棱锥(三棱锥,四棱锥,…);3)球体.
多面体:围成立体图形的面是平的面,像这样的立体图形,又称为多面体.
2.视图:从三个不同的方向看一个物体,一般是从正面、上面和侧面,然后描绘三张所看到的图,即视图.
从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图(左视图,右视图).
3.表面展开图:多面体是由平面图形围成的立体图形,沿着多面体的棱将它剪开,可以把多面体的表面变成一个平面图形.
4.圆是由曲线围成的封闭图形. 多边形是由线段围成的封闭图形.
一个n边形至少可以分割成n-2个三角形.
5.射线:线段向一方无限延伸所形成的图形叫做射线;
直线:把线段向两方无限延伸所形成的图形就是直线.
表示方法:点:用一个大写字母表示;
线段:用两个端点的大写字母表示;或用一个小写字母表示;
射线:用端点和射线上任意一点的两个大写字母表示;或用一个小写字母表示;
直线:用直线上任意两点的大写字母表示;或用一个小写字母表示.
公理1:两点之间,直段最短.此时线段的长度,就是这两点间的距离.
公理2:经过两点有一条直线,并且只有一条直线.
6.线段的中点:把一条险段分成两条相等线段的点,叫做这条线段的中点.
7.角:由两条有公共端点的射线组成的图形.可以看成是由一条射线绕着它的端点旋转而成的图形.
角的顶点:射线的端点;角的始边:起始位置的射线;角的终边:终止位置的射线.
表示方法:(1)用两边和顶点的三个大写字母表示(顶点字母在中间);(2)用顶点的大写字母表示;(3)用阿拉伯数字表示;(4)用小写的希腊字母表示.
8.平角:绕着端点旋转到角的终边和始边成一直线所成的角;
周角:绕着端点旋转到终边和始边重合所成的角.
9.1周角=360;1平角=180;1=60′;1′=60".
10.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.
11.互余:两个角的和等于90,就说这两个角互为余角,简称互余.
互补:两个角的和等于一平角(180),就说这两个角互为补角,简称互补.
同角(等角)的余角相等;同角(等角)的补角相等.
图1
两直线相交形成了∠1、∠2、∠3和∠4(如图1),我们把其中的∠1和∠3叫做对顶角,∠2和∠4也是对顶角.对顶角相等.
12.互相垂直:直线AB与直线CD相交,交点为O,当所构成的四个角中有一个为直角时,其他三个角也都成为直角,此时,直线AB、CD互相垂直,记作“AB⊥CD”,他们的交点O叫做垂足.
在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直.
若线段AB垂直于直线BC,垂足为B.线段AB叫做点A到直线BC的垂线段,它的长度就是点A到直线BC的距离.直线外一点与直线上各点连结而得到的所有线段中,垂线段最短.
13.同位角,内错角,同旁内角(见教材P164-165).
14.平行线:在同一平面内不相交的两条直线叫做平行线.
在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行.
经过已知直线外一点,有且只有一条直线与已知直线平行.
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
15.平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行.
垂直于同一条直线的两条直线互相平行.
16.平行线的性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
知识框图
第五章 数据的收集与表示
1.频数:表示每个对象出现的次数,频率:表示每个对象出现的次数与总次数的比值(或者百分比).
2.条形统计图是用宽度相同的条形的高低或长短来表示数据特征的统计图,它们可以直观地反映出数据的数量特征。如果有两个研究对象,常常把两个对象的响应数据并列表示在同一张条形统计图中.
扇形统计图是用圆的面积表示一组数据的整体,用圆中扇形面积与圆面积的比来表示各组成部分在总体中所占的百分比的统计图。扇形统计图可以直观地反映出各部分数量在总量中所占的份额.
折线统计图是用折线表示数量变化规律的统计图。如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化.
3.总结
一、 知识结构
利用数据解决简单实际问题的过程如下:
提出问题
收集数据
整理和描述数据
分析数据
回答问题
频数
频率
统计图表
初一数学科总复习
第一章 有理数
一、 知识要点
本章的主要内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。
基础知识:
1、正数(position number):大于0的数叫做正数。
2、负数(negation number):在正数前面加上负号“-”的数叫做负数。
3、0既不是正数也不是负数。
4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。
数轴满足以下要求:
(1) 在直线上任取一个点表示数0,这个点叫做原点(origin);
(2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
(3) 选取适当的长度为单位长度。
6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。
7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
8、有理数加法法则
(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0.
(3)一个数同0相加,仍得这个数。
加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。
加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。
表达式:(a+b)+c=a+(b+c)
9、有理数减法法则
减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)
10、有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)
乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
表达式:a(b+c)=ab+ac
11、倒数
1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。
12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.
13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。
根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
14、有理数的混合运算顺序
(1)“先乘方,再乘除,最后加减”的顺序进行;
(2)同级运算,从左到右进行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0
0 ⇔a>b;
(4) 做商法:a/b>1,b>0 ⇔a>b.
二、 基础训练
选择题
1、下列运算中正确的是( ).
A. a2a3=a6 B. =2 C. |(3-π)|=-π-3 D. 32=-9
2、下列各判断句中错误的是( )
A.数轴上原点的位置可以任意选定
B.数轴上与原点的距离等于个单位的点有两个
C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示
D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、、是有理数,若>且,下列说法正确的是( )
A.一定是正数 B.一定是负数
C.一定是正数 D.一定是负数
4、两数相加,如果比每个加数都小,那么这两个数是( )
A.同为正数 B.同为负数 C.一个正数,一个负数 D.0和一个负数
5、两个非零有理数的和为零,则它们的商是()
A.0 B.-1 C.+1 D.不能确定
6、一个数和它的倒数相等,则这个数是( )
A.1 B.-1 C. 1 D. 1和0
7、如果|a|=-a,下列成立的是( )
A.a>0 B.a<0 C.a>0或a=0 D.a<0或a=0
8、(-2)11+(-2)10的值是( )
A.-2 B.(-2)21 C.0 D.-210
9、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( )
A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶
10、在下列说法中,正确的个数是( )
⑴任何一个有理数都可以用数轴上的一个点来表示
⑵数轴上的每一个点都表示一个有理数
⑶任何有理数的绝对值都不可能是负数
⑷每个有理数都有相反数
A、1 B、2 C、3 D、4
11、如果一个数的相反数比它本身大,那么这个数为( )
A、正数 B、负数
C、整数 D、不等于零的有理数
12、下列说法正确的是( )
A、几个有理数相乘,当因数有奇数个时,积为负;
B、几个有理数相乘,当正因数有奇数个时,积为负;
C、几个有理数相乘,当负因数有奇数个时,积为负;
D、几个有理数相乘,当积为负数时,负因数有奇数个;
13、如果零上3℃记作+3℃,那么零下3℃记作( )
A、—3 B、-6 C、-3℃ D、-6℃
14、若a与2互为相反数,则∣a+2∣等于( )
A、0 B、-2 C、2 D、4
填空题
1、在有理数-7,,-(-1.43),,0,,-1.7321中,是整数的有_____________是负分数的有_______________。
2、一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度;表示数-a的点在原点的____边,与原点的距离是____个单位长度。
3、如果一个数是6位整数,用科学记数法表示它时,10的指数是_____;用科学记数法表示一个n位整数,其中10的指数是___________.
4、实数a、b、c在数轴上的位置如图:化简|a-b|+|b-c|-|c-a|.
5、绝对值大于1而小于4的整数有_____________________________________,其和为___________.
6、若a、b互为相反数,c、d互为倒数,则(a+b)3-3(cd)4=________.
7、1-2+3-4+5-6+……+2001-2002的值是____________.
8、若(a-1)2+|b+2|=0,那么a+b=_____________________.
9、平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.
10、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0精确到 位。
11、正数–a的绝对值为__________;负数–b的绝对值为________
12、甲乙两数的和为-23.4,乙数为-8.1,甲比乙大
13、在数轴上表示两个数, 的数总比 的大。(用“左边”“右边”填空)
14、数轴上原点右边4.8厘米处的点表示的有理数是32,那么,数轴左边18厘米处的点表示的有理数是____________。
15、温度由-5℃下降3℃后,结果可记为_____.
16、-1/3的相反数是_______,绝对值是_______,倒数是_______.
三、强化训练
1、计算:1+2+3+…+2002+2003=__________.
2、已知:若(a,b均为整数)则a+b=
3、观察下列等式,你会发现什么规律:,,,。。。请将你发现的规律用只含一个字母n(n为正整数)的等式表示出来
4、已知,则___________
5、已知是整数,是一个偶数,则a是 (奇,偶)
6、已知1+2+3+…+31+32+33==1733,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
7、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
8、如果规定符号“*”的意义是a*b=ab/(a+b),求2*(-3)*4的值。
9、已知|x+1|=4,(y+2)2=4,求x+y的值。
10、投资股票是一种很重要的投资方式,但股市的风云变化又牵动了股民的心。
例:某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元):
星期
一
二
三
四
五
每股涨跌
+4
+4.5
-1
-2.5
-6
(1) (1) 星期三收盘时,每股是多少元?
(2) (2) 本周内最高价是每股多少元?最低价是多少元?
(3) 已知买进股票是付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?
(4) 以买进的股价为0点,用折线统计图表示本周该股的股价情况。
第二章 整式的加减总复习
【知识点定义】
1、单项式
对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.
2、系数
单项式中的数字因数叫做这个单项式的系数.
3、单项式的次数
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4、多项式
几个单项式的和叫做多项式.
5、多项式的项
在多项式中,每个单项式叫做多项式的项.
-6是常数项.
6、常数项
多项式中,不含字母的项叫做常数项.
7、多项式的次数
多项式里,次数最高的项的次数,就是这个多项式的次数.
8、降幂排列
把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.
9、升幂排列
把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
10、整式
单项式和多项式统称整式。
11、同类项
所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.
12、合并同类项
把多项式中的同类项合并成一项,叫做合并同类项.
合并同类项的法则是:
同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
13、去括号法则
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;
括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
例:a+(b-2c)-(e-2d)=a+b-2c-e+2d
14、添括号法则
添括号后,括号前面是“+”号,括到括号里的各项都不变符号;
添括号后,括号前面是“-”号,括到括号里的各项都改变符号.
例:m+2x-y+z-5=m+(2x-y)-(-z+5)
15、整式的加减
整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号;
2.合并同类项.
16、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
第三章《一元一次方程》综合复习指导
【知识点归纳】
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么=
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1、 去分母(方程两边同乘各分母的最小公倍数)
2、去括号(按去括号法则和分配律)
3、 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4、合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).
六、用方程思想解决实际问题的一般步骤
1、 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.、设:设未知数(可分直接设法,间接设法)
3、 列:根据题意列方程.
4、 解:解出所列方程.
5、 检:检验所求的解是否符合题意.
6、 答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1、 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2、 等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3、劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4、 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5、工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率工作时间
6、行程问题:
(1)行程问题中的三个基本量及其关系: 路程=速度时间.
(2)基本类型有
① 相遇问题;
② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7、商品销售问题
有关关系式:
商品利润=商品售价—商品进价=商品标价折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价折扣率
8、储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金利率期数
本息和=本金+利息
利息税=利息税率(20%)
【典型例题】
一、一元一次方程的有关概念
例1.一个一元一次方程的解为2,请写出这个一元一次方程 .
分析与解:这是一道开放性试题,答案不唯一.如x=1,x-2=0等等.
【点拨】 解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成.
二、一元一次方程的解
例2.若关于的一元一次方程的解是,则的值是( )
A. B.1 C. D.0
分析:根据方程解的定义,一元一次方程的解能使方程左、右两边的值相等,把x=-1代入原方程得到一个关于k的一元一次方程,解这个方程即可得到k的值.
解:把x=-1代入中得,-=1,解得:k=1.答案为B.
【点拨】根据方程解的概念,直接把方程的解代入即可.
三、一元一次方程的解法
例3.如果,那么等于( )
(A)1814.55 (B)1824.55 (C)1774.45 (D)1784.45
分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.
【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.
例4. {[(x-1)-3]-3}=3
分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生.
解:去大括号,得 [(x-1)-3]-2=3
去中括号,得(x-1)-3-2=3
去小括号,得x--3-2=3
移项,得x=+3+2+3
合并,得x=
系数化为1,得:x = 17
四、一元一次方程的实际应用
例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
分析:可以先设1个小餐厅可供名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y)名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2(1680-2y)+y=2280
解:(1)设1个小餐厅可供名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得
2(1680-2y)+y=2280
解得:y=360(名)
所以1680-2y=960(名)
答:(略).
(2)因为,
所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可.
例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?
分析:根据利润=售价-进价与售价=标价折扣率这两个等量关系以及按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,就可以列出一元一次方程.
解:设该工艺品每件的进价是元,标价是(45+x)元.依题意,得:
8(45+x)0.85-8x=(45+x-35)12-12x
解得:x=155(元)
所以45+x=200(元)
答:(略).
【点拨】这是销售问题,在解答销售问题时把握下列关系即可:
商品售价=商品标价折扣率
商品利润=商品售价—商品进价=商品标价折数—商品进价
商品利润率=100%
例7.(2006益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
分析:这是一道情景对话问题,具有一定的新颖性.解答这类问题的关键是要从对话中捕捉等量关系.从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5)=95元.根据上述等量关系可以得到相应的方程.
解:设笔记本每本x元,则钢笔每支为(x+2)元,据题意得
10(x+2)+15x=100-5
解得,x=3(元)
所以x+2=5(元)
答:(略).
【点拨】在情景问题应用中,捕捉等量关系是关键.
第四章 图形认识初步
【知识点归纳】
一、 多姿多彩的图形
1. 从实物中抽象出的各种图形统称为几何图形。
2. 点、线、面、体
A. 点:线和线相交的地方。
B. 线:面和面相交的地方,线可分为直线、射线、线段
C. 体:正方体、长方体、圆柱、球等都是几何体,几何体简称体。
D. 面:包围着体的是面,面可分为平的面、曲的面。
二、 直线、射线、线段
1.两点确定一条直线
2.当两条不同的直线有一个公共点时,我们就称这两条直线相交,
这个公共
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。