南京大学数学分析高等代数考研真命题与解析.doc
.南京大学数学分析,高等代数考研真题南京大学2002年数学分析考研试题一 求下列极限。(1);(2)设,(i)在上的最大值;(ii)设,求。二 设,试证明在内有无穷多个零点。三 设在的某个邻域内连续,且, (1)求; (2)求;(3)证明在点处取得最小值。四 设在的某个邻域内具有二阶连续导数,且,试证明: (1); (2)级数绝对收敛。五 计算下列积分 (1)求; (2),其中是圆柱面,三个坐标平面及旋转抛物面所围立体的第一象限部分的外侧曲面。六 设,在内可导,不恒等于常数,且,试证明:在内至少存在一点,使。七 在变力的作用下,质点由原点沿直线运动到椭球面,第一象限的点,问取何值时,所做的功最大,并求的最大值。八 (1)证明:,; (2)求。南京大学2002年数学分析考研试题解答一 (1)解 . (2)解 (i),当时,在上单增,当时,在上单减,所以在处达到最大值,;(ii)当时, 单调递增有上界,设,则有,;当时,;当时,二 证明 因为,显然在上连续,由连续函数的介值定理知,存在使得 ,即得在上有无穷多个零点。三 解 (1),因为,所以,于是;(3)由知,存在,当时,即知中在处取得极小值。四 、证明 (1)由,知,由知.(2),已知收敛,其中,于是收敛,结论得证。五 (1)解 ,所以 .(2)解 曲面,事物交线为,其中是区域的边界时,利用高斯公式, . 当是的边界时,利用高斯公式 .六 证明 证法一 用反证法,假若结论不成立,则对任意,都有,在上单调递减,由于不恒等于常数,所以不恒等于零,存在一点,使得,存在,使得,因为,所以,这与矛盾,从而假设不成立,原结论得证。证法2 由于在上连续,在上取到最大值和最小值,且,由于,所以的最大值或最小值必在内达到。若在处达到最大值,存在使得,从而有;若在处达到最小值,存在使得,从而有;结论得证。七 解 设,则有,所以是有势场,由于时,等号成立当且仅当,所以时,达到最大值,且的最大值为。八 证明 (1)由于当时,有,对任意,取,所以有;(2)取,有,收敛,对任意,在上一致收敛于,故由函数列积分的黎曼控制收敛定理, 。南京大学2003年数学分析考研试题一 求下列极限(1)设,求;(2)设,求。(3)。二 过点作抛物线的切线,求 (1)切线方程; (2)由抛物线、切线及轴所围成的平面图形面积; (3)该平面图形分别绕轴和轴旋转一周的体积。三 对任一,求在中的最大值,并证明该最大值对任一,均小于。四 设在上有连续导数,且,(为常数),试证:在内仅有一个零点。五 计算下列积分 (1)设,求和; (2),其中为上半球面,的外侧。六 设,在上黎曼可积, (1)求,并讨论在上的一致收敛性; (2)求,(要说明理由)七 设的收敛半径为,令,试证明:在上一致收敛于,其中为任一有穷闭区间。南京大学2003年数学分析考研试题解答一 (1)解 设,则有,由此知,; (2)解 由归纳法,易知,由此知,单调递增有界,设,则有 ,故。(3) ,故。3 解 (1),设切点为,设切点的切线方程为。将,代入,所求切线方程为,即。(2)解。(3), 。三 解 ,当时,当时,于是在处达到最大值,。容易证明在上单调递减, 故有.四 证明 对任意,,当充分大时,有,又,由连续函数的介值定理,存在,由,在上严格单调递增,所以在内仅有一个零点。五 (1)解 ,显然,.(2)解 , .六、解 ,由于极限函数在上不连续,所以在上不一致收敛;但对任何在上一致收敛于0;且,根据控制收敛定理,对于在上黎曼可积, 有 。七、 证明 由条件知在上连续,在任意有限区间上是一致收敛的,对任意有限区间,在上一致收敛于,在上一致有界,再由在上一致连续,于是有在上一致收敛于.
收藏
编号:2582419
类型:共享资源
大小:965.49KB
格式:DOC
上传时间:2020-04-22
8
金币
- 关 键 词:
-
南京大学
南大
数学分析
高等
代数
考研
命题
解析
- 资源描述:
-
.\
南京大学数学分析,高等代数考研真题
南京大学2002年数学分析考研试题
一 求下列极限。
(1);
(2)设,,
(i)在上的最大值;
(ii)设,,,,求。
二 设,试证明在内有无穷多个零点。
三 设在的某个邻域内连续,且,,
(1)求;
(2)求;
(3)证明在点处取得最小值。
四 设在的某个邻域内具有二阶连续导数,且,试证明:
(1);
(2)级数绝对收敛。
五 计算下列积分
(1)求;
(2),其中是圆柱面,三个坐标平面及旋转抛物面所围立体的第一象限部分的外侧曲面。
六 设,在内可导,不恒等于常数,且,
试证明:在内至少存在一点,使。
七 在变力的作用下,质点由原点沿直线运动到椭球面
,
第一象限的点,问取何值时,所做的功最大,并求的最大值。
八 (1)证明:,;
(2)求。
南京大学2002年数学分析考研试题解答
一 (1)解
.
(2)解 (i),
当时,,在上单增,
当时,,在上单减,
所以在处达到最大值,;
(ii)当时,,
,
,
,
,,
, 单调递增有上界,设,则有
,,,
;
当时,,;
当时,,,
,
二 证明 因为,
,,
显然在上连续,由连续函数的介值定理知,存在使得
,
即得在上有无穷多个零点。
三 解 (1),
因为,所以,
,
,
于是;
(3)由知,存在,当时,,,
即知中在处取得极小值。
四 、证明 (1)由,知,
由知.
(2),
,已知收敛,其中,
于是收敛,结论得证。
五 (1)解
,
所以
.
(2)解 曲面,事物交线为,,
,
,
其中是区域的边界时,利用高斯公式,
.
当是的边界时,利用高斯公式
.
六 证明 证法一 用反证法,假若结论不成立,则对任意,都有,在上单调递减,由于不恒等于常数,所以不恒等于零,存在一点,使得,,存在,使得
,,
因为,,
所以,这与矛盾,从而假设不成立,原结论得证。
证法2 由于在上连续,在上取到最大值和最小值,且,由于,所以的最大值或最小值必在内达到。
若在处达到最大值,存在使得
,
从而有;
若在处达到最小值,存在使得
,
从而有;
结论得证。
七 解 设,则有,所以是有势场,
,
由于时,
,
,
等号成立当且仅当,
所以时,达到最大值,且的最大值为。
八 证明 (1)由于当时,有,
对任意,,取,,
所以有;
(2)取,
有,收敛,
对任意,在上一致收敛于,
故由函数列积分的黎曼控制收敛定理,
。
南京大学2003年数学分析考研试题
一 求下列极限
(1)设,求;
(2)设,,,求。
(3)。
二 过点作抛物线的切线,求
(1)切线方程;
(2)由抛物线、切线及轴所围成的平面图形面积;
(3)该平面图形分别绕轴和轴旋转一周的体积。
三 对任一,求在中的最大值,
并证明该最大值对任一,均小于。
四 设在上有连续导数,且,,(为常数),试证:在内仅有一个零点。
五 计算下列积分
(1)设,,求和;
(2),其中为上半球面,的外侧。
六 设,在上黎曼可积,
(1)求,并讨论在上的一致收敛性;
(2)求,(要说明理由)
七 设的收敛半径为,令,试证明:在上一致收敛于,其中为任一有穷闭区间。
南京大学2003年数学分析考研试题解答
一 (1)解 设,则有,
由此知,;
(2)解 由归纳法,易知,,
,
由此知,单调递增有界,设,,
则有 ,
,故。
(3)
,
,
故。
3 解 (1),设切点为,,
设切点的切线方程为。
将,代入,,
,
,,
所求切线方程为,即。
(2)解。
(3)
,
。
三 解 ,
当时,,
当时,,
于是在处达到最大值,
。
容易证明在上单调递减,,
,
故有.
四 证明 对任意,
,
当充分大时,有,又,由连续函数的介值定理,存在,,
由,在上严格单调递增,所以在内仅有一个零点。
五 (1)解
,
显然,
,
,
.
(2)解 ,
,
.
六、解 ,
由于极限函数在上不连续,
所以在上不一致收敛;
但对任何在上一致收敛于0;
且,
根据控制收敛定理,
对于在上黎曼可积,
有 。
七、 证明 由条件知在上连续,在任意有限区间上是一致收敛的,
对任意有限区间,在上一致收敛于,
在上一致有界,,
再由在上一致连续,
于是有在上一致收敛于.
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。