弧弦圆心角教学设计.doc
《弧弦圆心角教学设计.doc》由会员分享,可在线阅读,更多相关《弧弦圆心角教学设计.doc(2页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、33 弧、弦、圆心角教学设计 中心发言人:xjx教学目标:1使学生进一步理解圆的旋转不变性,利用圆的旋转不变性发现“在同圆或等圆中,弧、弦、圆心角之间的关系定理”。 2使学生掌握圆心角、弦、弧之间的关系,并会用定理解答简单的与之相关的计算与证明。3培养学生观察、比较、归纳、概括问题的能力。教学重点:理解和正确运用“圆心角、弦、弧之间的关系定理”。教学难点:圆心角、圆心角所对的弧,圆心角所对弦之间的关系定理的应用。集体备教教学过程: 一、探索新知1、动画演示:把AOB旋转到AOB的位置.可以发现什么?(1)AOB= AOB (2)(3)AB= AB2、归纳结论:在同圆或等圆中,如果圆心角相等,那
2、么它所对的弧_,所对的弦_。在同圆或等圆中,如果弧相等,那么它所对的圆心角_,所对的弦_。在同圆或等圆中,如果弦相等,那么它所对的圆心角_,圆心角所对的弧_。二、课堂巩固3、思考-在同心圆O中 这个说法正确吗?为什么?1、判断题、如果圆心角相等,那么它所对的弧相等,所对的弦相等。 、等弧所对的弦相等。 、在同圆或等圆中,如果弦相等,那 么它所对的弧相等。 4、例1如图,在O中,弧AC弧BD,145,求2的度数.变式:若1 2,求证: 弧AC弧BD 。练习1、如图,在O中,弧AB弧AC,C75.求A度数.变式:若A40,求B (课本87页2)CBAO5、例2:如图,在O中,弧AB弧AC,ACB60,求证:AOB BOC=COA练习2、如图,AB是直径,弧BC弧CD弧DE,COD35,求AOE的度数.( P83第2题) 6. 课后拓展:小林根据在一个圆中圆心角、弧、弦三个量之间的关系,认为:如上图,已知:AOB= 2COD,则AB=2 CD,弧AB=2弧CD。你同意他的说法吗?请说明理由。三课后小结:四教学反思 :个性补教 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆心角 教学 设计
限制150内