专题09 直线与圆(教学案)-2018年高考数学(文)考纲解读与热点难点突破 .doc
《专题09 直线与圆(教学案)-2018年高考数学(文)考纲解读与热点难点突破 .doc》由会员分享,可在线阅读,更多相关《专题09 直线与圆(教学案)-2018年高考数学(文)考纲解读与热点难点突破 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【2018年高考考纲解读】高考对本内容的考查主要有:直线和圆的方程;两直线的平行与垂直关系;点到直线的距离;直线与圆的位置关系;直线被圆截得的弦长多为B级或C级要求【重点、难点剖析】 1两直线平行或垂直(1)两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1l2k1k2.特别地,当直线l1,l2的斜率都不存在且l1与l2不重合时,l1l2.(2)两条直线垂直:对于两条直线l1,l2,其斜率分别为k1,k2,则有l1l2k1k21.特别地,当l1,l2中有一条直线的斜率不存在,另一条直线的斜率为零时,l1l2.2圆的方程(1)圆的标准方程:(xa)2(yb)2r2(r
2、0),圆心为(a,b),半径为r.(2)圆的一般方程:x2y2DxEyF0(D2E24F0),圆心为,半径为r;对于二元二次方程Ax2BxyCy2DxEyF0表示圆的充要条件是3直线方程的5种形式中只有一般式可以表示所有的直线在利用直线方程的其他形式解题时,一定要注意它们表示直线的局限性比如,根据“在两坐标轴上的截距相等”这个条件设方程时一定不要忽略过原点的特殊情况而题中给出直线方程的一般式,我们通常先把它转化为斜截式再进行处理4处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化5直线与圆中
3、常见的最值问题(1)圆外一点与圆上任一点的距离的最值(2)直线与圆相离,圆上任一点到直线的距离的最值(3)过圆内一定点的直线被圆截得弦长的最值(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题(5)两圆相离,两圆上点的距离的最值【题型示例】题型1、直线和圆的方程【例1】 【2017江苏,13】在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是 .【答案】 【变式探究】【2016高考新课标3文数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则_.【答案】4【解析】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几
4、何知识知在梯形中,【举一反三】 (2015江苏,10)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mxy2m10(mR)相切的所有圆中,半径最大的圆的标准方程为_解析直线mxy2m10恒过定点(2,1),由题意,得半径最大的圆的半径r.故所求圆的标准方程为(x1)2y22.答案(x1)2y22 【变式探究】 (1)已知A,B两点分别在两条互相垂直的直线2xy0和xay0上,且AB线段的中点为P,则线段AB的长为()A11B10C9D8(2)(2014重庆)已知直线axy20与圆心为C的圆(x1)2(ya)24相交于A,B两点,且ABC为等边三角形,则实数a_.【命题意图】(1)本题主
5、要考查两直线的位置关系及两点间距离公式的应用,意在考查考生的运算求解能力(2)本题主要考查圆的方程与点到直线的距离公式,意在考查考生的数形结合思想【答案】(1)B(2)4【感悟提升】(1)要注意几种直线方程的局限性点斜式、两点式、斜截式要求直线不能与x轴垂直,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线(2)求解与两条直线平行或垂直有关的问题时,主要是利用两条直线平行或垂直的充要条件,即“斜率相等”或“互为负倒数”若出现斜率不存在的情况,可考虑用数形结合的方法去研究提醒:判断两条直线的位置关系时要注意两个易错点:一是忽视直线的斜率不存在的情况,二是忽视两直线重合的情况(3)一
6、些含有参数的直线方程可能出现当x,y取定值时方程对任意参数恒成立的情况,这种情况就是直线恒过定点一般解法是把直线方程整理成关于参数的方程,根据这个方程对任意参数恒成立,得到一个关于x,y的方程组,这个方程组的解就是直线恒过定点的坐标【变式探究】若一三角形三边所在的直线方程分别为x2y50,y20,xy40,则能够覆盖此三角形且面积最小的圆的方程为_【答案】(x2)22【解析】结合题意,易得三角形的三个顶点分别是(1,2),(2,2)和(3,1),作出图形,即可判断该三角形为钝角三角形,而能够覆盖钝角三角形的圆是以钝角的对边(最长边)为直径的圆,而最长边的两个端点坐标分别为(1,2),(3,1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题09 直线与圆教学案-2018年高考数学文考纲解读与热点难点突破 专题 09 直线 教学 2018 年高 数学 解读 热点 难点 突破
限制150内