初三数学圆的经典编辑讲义.doc

收藏

编号:2587852    类型:共享资源    大小:1.54MB    格式:DOC    上传时间:2020-04-22
8
金币
关 键 词:
初三 数学 经典 编辑 编纂 讲义
资源描述:
-* 圆 目 录 圆的定义及相关概念 垂经定理及其推论 圆周角与圆心角 圆心角、弧、弦、弦心距关系定理 圆内接四边形 会用切线 , 能证切线 切线长定理 三角形的内切圆 了解弦切角与圆幂定理(选学) 圆与圆的位置关系 圆的有关计算 一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。 考点5 点和圆的位置关系 设圆的半径为r,点到圆心的距离为d, 则点与圆的位置关系有三种。 ①点在圆外d>r;②点在圆上d=r;③点在圆内 d<r; 【典型例题】 例1 在⊿ABC 中,∠ACB=90,AC=2,BC=4,CM是AB边上的中线,以点C为圆心,以为半径作圆,试确定A,B,M三点分别与⊙C有怎样的位置关系,并说明你的理由。 M A B C 例2.已知,如图,CD是直径,,AE交⊙O于B,且AB=OC,求∠A的度数。 D O E B A C 例3 ⊙O平面内一点P和⊙O上一点的距离最小为3cm,最大为8cm,则这圆的半径是_________cm。 例4 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,则AB和CD的距离是多少? 例5 如图,⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,, A B D C O E 求CD的长. 例6.已知:⊙O的半径0A=1,弦AB、AC的长分别为,求的度数. 二.垂径定理及其推论 【考点速览】 考点1 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条孤. 推论1: ①平分弦(不是直径)的直径重直于弦,并且平分弦所对的两条孤. ②弦的垂直平分线经过圆心,并且平分弦所对的两条孤. ③平分弦所对的一条孤的直径,垂直平分弦,并且平分弦所对的另一条孤. 推论2.圆的两条平行弦所夹的孤相等.垂径定理及推论1中的三条可概括为: ① 经过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧.以上五点已知其中的任意两点,都可以推得其它两点 【典型例题】 例1 如图AB、CD是⊙O的弦,M、N分别是AB、CD的中点,且. A B D C O N M 求证:AB=CD. 例2已知,不过圆心的直线交⊙O于C、D两点,AB是⊙O的直径,AE⊥于E,BF⊥于F。求证:CE=DF. 【考点速练】 1.已知⊙O的半径为2cm,弦AB长,则这条弦的中点到弦所对劣孤的中点的距离为( ). A.1cm B.2cm C. D.cm 3.如图1,⊙O的半径为6cm,AB、CD为两弦,且AB⊥CD,垂足为点E,若CE=3cm,DE=7cm,则AB的长为( ) A.10cm B.8cm C. D. 4.有下列判断:①直径是圆的对称轴;②圆的对称轴是一条直径;③直径平分弦与弦所对的孤;④圆的对称轴有无数条.其中正确的判断有( ) A.0个 B.1个 C.2个 D.3个 5.如图2,同心圆中,大圆的弦交AB于C、D若AB=4,CD=2,圆心O到AB的距离等于1,那么两个同心圆的半径之比为( ) A.3:2 B.:2 C.: D.5:4 6.如图,⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是 . 7.如图,已知有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是_ ___m. A B D C O 800 8.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,求水的最大深度CD. 三.圆周角与圆心角 【考点速览】 考点1 圆心角:顶点在圆心的角叫圆心角,圆心角的度数等于它所对的弧的度数。 Eg: 判别下列各图中的角是不是圆心角,并说明理由。 圆周角:顶点在圆周上,角两边和圆相交的角叫圆周角。两个条件缺一不可. Eg: 判断下列图示中,各图形中的角是不是圆周角,并说明理由 考点2 定理:一条弧所对的圆周角等于它所对的圆心角的一半. Eg: 如下三图,请证明。 考点3 4. 推论: ①同弧或等弧所对的圆周角相等,同圆或等圆中,相等的圆周角所对的弧也相等. ②半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径. ③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. 经典例题 例1:下图中是圆周角的有 .是圆心角的有 。 ① ② ③ ④ ⑤ ⑥ 例2:如图,∠A是⊙O的圆周角,且∠A=35,则∠OBC=_____. B O C A O A B C 例3:如图,圆心角∠AOB=100,则∠ACB=    . E F C D G O 例2 例4:如图1,是⊙O的直径,点都在⊙O上,若,则 . (例1) 例如图2,⊙O的直径过弦的中点,,则 . 例6:已知:如图,AD是⊙O的直径,∠ABC=30,则∠CAD=_______. _ . . . _ D _ C _ B _ A _ O 例7:已知⊙O中,,,则⊙O的半径为 四.圆心角、弧、弦、弦心距关系定理 【考点速览】 圆心角, 弧,弦,弦心距之间的关系定理: 在同圆或等圆中,相等的圆心角所对的孤相等,所对的弦相等,所对的弦的弦心距相等 推论:在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等. (务必注意前提为:在同圆或等圆中) A B E F OO PO CO 1O 2O DO 例1.如图所示,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边分别交于A、B和C、D,求证:AB=CD. 例2、已知:如图,EF为⊙O的直径,过EF上一点P作弦AB、CD,且∠APF=∠CPF。 求证:PA=PC。 O A B C 例3.如图所示,在中,∠A=,⊙O截的三条边长所得的三条弦等长,求∠BOC. 例4.如图,⊙O的弦CB、ED的延长线交于点A,且BC=DE.求证:AC=AE. O C A E B D 例5.如图所示,已知在⊙O中,弦AB=CB,∠ABC=,OD⊥AB于D,OE⊥BC于E. 求证:是等边三角形. O A D E B C 五.圆内接四边形 【考点速览】 圆内接四边形对角互补,外角等于内对角。 圆内接梯形为等腰梯形,圆内接平行四边形为矩形。 判断四点共圆的方法之一:四边形对角互补即可。 【典型例题】 例1 (1)已知圆内接四边形ABCD中,∠A:∠B:∠C=2:3:4,求∠D的度数. A B C D O (2)已知圆内接四边形ABCD中,如图所示,AB、BC、CD、AD的度数之比为1:2:3:4,求∠A、∠B、∠C、∠D的度数. 例2 四边形ABCD内接于⊙O,点P在CD的延长线上,且AP∥BD.求证: A D C B O P 例3 如图所示,是等边三角形,D是BC上任一点.求证:DB+DC=DA. A B C D O 六.会用切线,能证切线 考点速览: 考点1 直线与圆的位置关系 图形 公共点个数 d与r的关系 直线与圆的位置关系 0 d>r 相离 1 d=r 相切 2 d
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:初三数学圆的经典编辑讲义.doc
链接地址:https://www.taowenge.com/p-2587852.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开