2019版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.10 导数的概念及运算 .docx
《2019版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.10 导数的概念及运算 .docx》由会员分享,可在线阅读,更多相关《2019版高考数学(文)高分计划一轮高分讲义:第2章函数、导数及其应用 2.10 导数的概念及运算 .docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.10导数的概念及运算 知识梳理1变化率与导数(1)平均变化率 (2)导数2导数的运算诊断自测1概念思辨(1)f(x0)与(f(x0)表示的意义相同()(2)f(x0)是函数yf(x)在xx0附近的平均变化率()(3)与曲线只有一个公共点的直线一定是曲线的切线()(4)曲线yf(x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同()答案(1)(2)(3)(4) 2教材衍化(1)(选修A11P74思考)若函数f(x)2x21的图象上一点(1,1)及邻近一点(1x,1y),则等于()A4 B4xC42x D42(x)2答案C解析y(1y)1f(1x)f(1)2(1x)2112(x)
2、24x,2x4.故选C.(2)(选修A11P85T7)f(x)cosx在处的切线的倾斜角为_答案解析f(x)(cosx)sinx,f1,tan1,所以.3小题热身(1)(2017湖北百所重点高中联考)已知函数f(x1),则曲线yf(x)在点(1,f(1)处切线的斜率为()A1 B1 C2 D2答案A解析f(x1),故f(x),即f(x)2,对f(x)求导得f(x),则f(1)1,故所求切线的斜率为1.故选A.(2)(2017太原模拟)函数f(x)xex的图象在点(1,f(1)处的切线方程是_答案y2exe解析f(x)xex,f(1)e,f(x)exxex,f(1)2e,f(x)的图象在点(1,
3、f(1)处的切线方程为ye2e(x1),即y2exe.题型1导数的定义及应用 已知函数f(x)1,则 的值为()A B. C. D0用定义法答案A解析由导数定义, f(1),而f(1).故选A.已知f(2)2,f(2)3,则 1的值为()A1 B2 C3 D4用定义法答案C解析令x2x,x2x,则原式变为 1f(2)13.故选C.方法技巧由定义求导数的方法及解题思路1导数定义中,x在x0处的增量是相对的,可以是x,也可以是2x,解题时要将分子、分母中的增量统一2导数定义 f(x0)等价于 f(x0)3求函数yf(x)在xx0处的导数的求解步骤:冲关针对训练用导数的定义求函数y在x1处的导数解记
4、f(x),则yf(1x)f(1)1, .y|x1.题型2导数的计算求下列函数的导数:(1)y(x1)(x2)(x3);(2)y;(3)ysin.解(1)解法一:y(x23x2)(x3)x36x211x6,所以y3x212x11.解法二:y(x1)(x2)(x3)(x1)(x2)(x3)(x1)(x2)(x1)(x2)(x3)(x1)(x2)(x2x1)(x3)(x1)(x2)(2x3)(x3)(x1)(x2)3x212x11.方法技巧导数计算的原则和方法1原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导2方法(1)连乘积形式:先展开化为多项式的形式,再求导,见典例
5、(1);(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导,见典例(2);(3)对数形式:先化为和、差的形式,再求导;(4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导,见典例(3)冲关针对训练1(2017温州月考)已知函数f(x)的导函数f(x),且满足f(x)2xf(1)ln x,则f(1)()Ae B1 C1 De答案B解析f(x)2xf(1)ln x,f(x)2xf(1)(ln x)2f(1),f(1)2f(1)1,即f(1)1.故选B.2求下列函数的导数:(1)y(1);(2)ycos.解(1)y1
6、xx,y(x)(x)xx.(2)ycossin2x2sinxcosx.y2cos2x2sin2x2(cos2xsin2x)2cos2x.题型3曲线的切线问题角度1求曲线的切线方程(2017全国卷)曲线yx2在点(1,2)处的切线方程为_已知切点(x0,y0)求导数f(x0)k即可答案xy10解析y2x,y|x11,即曲线在点(1,2)处的切线的斜率k1,切线方程为y2x1,即xy10.角度2求切点坐标(多维探究)(2017石家庄模拟)若曲线yxln x上点P处的切线平行于直线2xy10,则点P的坐标是_利用方程思想方法答案(e,e)解析设P(x0,y0),则yxln x的导函数yln x1,由
7、题意ln x012,解得x0e,易求y0e.条件探究试求典例中曲线yxln x上与直线yx平行的切线方程解设切点为(x0,y0),因为yln x1,所以切线的斜率kln x01,由题意知k1,得x0,y0,故所求的切线方程为y,即e2xe2y10.角度3与切线有关的参数问题(2015 全国卷)已知曲线yxln x在点(1,1)处的切线与曲线yax2(a2)x1相切,则a_.利用方程思想答案8解析解法一:令f(x)xln x,求导得f(x)1,f(1)2,又f(1)1,所以曲线yxln x在点(1,1)处的切线方程为y12(x1),即y2x1.设直线y2x1与曲线yax2(a2)x1的切点为P(
8、x0,y0),则y|xx02ax0a22,得a(2x01)0,a0或x0,又ax(a2)x012x01,即axax020,当a0时,显然不满足此方程,x0,此时a8.解法二:令f(x)xln x,对f(x)xln x求导得f(x)1,f(1)2,所以曲线yxln x在点(1,1)处的切线方程为y2x1.将y2x1代入yax2(a2)x1,得ax2ax20,由题意得a28a0,得a8(a0舍去)方法技巧与导数几何意义有关问题的常见类型及解题策略1求切线方程:注意区分曲线在某点处的切线和曲线过某点的切线,曲线yf(x)在点P(x0,f(x0)处的切线方程是yf(x0)f(x0)(xx0);求过某点
9、M(x1,y1)的切线方程时,需设出切点A(x0,f(x0),则切线方程为yf(x0)f(x0)(xx0),再把点M(x1,y1)代入切线方程,求x0.2已知切线方程(或斜率)求切点的一般思路是先求函数的导数,然后让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标3根据导数的几何意义求参数的值时,一般是利用切点P(x0,y0)既在曲线上又在切线上构造方程组求解提醒:求曲线yf(x)过点P(x0,y0)的切线方程时,点P(x0,y0)不一定是切点冲关针对训练1(2017陕西五校联考)已知直线yxm是曲线yx23ln x的一条切线,则m的值为()A0 B2 C1 D
10、3答案B解析因为直线yxm是曲线yx23ln x的切线,所以令y2x1,得x1或x(舍),即切点为(1,1),又切点(1,1)在直线yxm上,所以m2.故选B.2已知曲线yx3.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为1的曲线的切线方程解(1)yx2,ky|x24,曲线在点P(2,4)处的切线方程为4xy40.(2)设曲线与过点P(2,4)的切线相切于点A,则ky|xx0x.切线方程为yxxx.又P(2,4)在切线上,42xx,即x3x40.xx4x40,(x01)(x02)20,x01,x02.故所求切线为4xy40或xy20.(3)设
11、切点为(x0,y0),则kx1,x01,故切点为,(1,1),所求切线方程为3x3y20和xy20.题型4导数的几何意义的应用 (2017资阳期末)若对x0,),不等式2axex1恒成立,则实数a的最大值是()A. B. C1 D2数形结合法答案A解析对x0,),不等式2axex1恒成立,设y2ax,yex1,其中x0;在同一坐标系中画出函数y2ax和yex1的图象如图所示;则yex,令x0,得ke01;曲线yex1过点O(0,0)的切线斜率为k1;根据题意得2a1,解得a,a的最大值为.故选A.已知函数f(x)x3x2,数列xn(xn0)的各项满足:曲线yf(x)在(xn1,f(xn1)处的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版高考数学文高分计划一轮高分讲义:第2章函数、导数及其应用 2.10导数的概念及运算 2019 高考 数学 高分 计划 一轮 讲义 函数 导数 及其 应用 2.10 概念 运算
链接地址:https://www.taowenge.com/p-2588655.html
限制150内