初级中学圆的学习知识重点情况总结加两套经典编辑试题(绝对超值).doc

收藏

编号:2590559    类型:共享资源    大小:2.54MB    格式:DOC    上传时间:2020-04-22
8
金币
关 键 词:
初级中学 学习 知识 重点 情况 总结 加两套 经典 编辑 编纂 试题 绝对 超值
资源描述:
-/ 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A在圆外 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-rr 点在圆上 d=r 点在圆内 dr 相切 d=r 相交 dR+r 外切 d=R+r 相交 R-r r,②d = r,③d < r. 2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为: ①d < r,②d = r,③d > r. 3.圆与圆的位置关系共有五种: ① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为: ①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线. 5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。 与圆有关的计算 1. 圆的周长为 2πr ,1的圆心角所对的弧长为 ,n的圆心角所对的弧长 为 ,弧长公式为n为圆心角的度数上为圆半径) . 2. 圆的面积为 πr2 ,1的圆心角所在的扇形面积为 ,n的圆心角所在的扇形面积为S= = (n为圆心角的度数,R为圆的半径). 3.圆柱的侧面积公式:S= 2 (其中为 底面圆 的半径 ,为 圆柱 的高.) 4. 圆锥的侧面积公式:S=(其中为 底面 的半径 ,为 母线 的长.) 圆锥的侧面积与底面积之和称为圆锥的全面积 A 组 一、选择题(每小题3分,共45分) 1.在△ABC中,∠C=90,AB=3cm,BC=2cm,以点A为圆心,以2.5cm为半径作圆,则点C和⊙A的位置关系是( )。 A.C在⊙A 上 B.C在⊙A 外 C.C在⊙A 内 D.C在⊙A 位置不能确定。 2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( )。 A.16cm或6cm B.3cm或8cm   C.3cm    D.8cm 3.AB是⊙O的弦,∠AOB=80则弦AB所对的圆周角是( )。   A.40 B.140或40  C.20   D.20或160 4.O是△ABC的内心,∠BOC为130,则∠A的度数为( )。 A.130 B.60 C.70 D.80 5.如图1,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A = 100,∠C = 30,则∠DFE的度数是( )。 A.55 B.60 C.65 D.70 6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A、B、C、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其 中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。 A. A处 B. B处 C.C处 D.D 处 图1 图2 7.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。   A.内含 B.内切 C.相交 D. 外切 8.已知半径为R和r的两个圆相外切。则它的外公切线长为( )。 A.R+r B. C. D.2 9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )。 A.10π B.12π C.15π D.20π 10.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是( )。 A.3 B.4 C.5 D.6 11.下列语句中不正确的有( )。 ①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A.3个 B.2个 C.1个 D.4个 12.先作半径为的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。 A. B. C. D. 13.如图3,⊿ABC中,∠C=90,BC=4,AC=3,⊙O内切于⊿ABC ,则阴影部分面积为( ) A.12-π B.12-2π C.14-4π D.6-π 14.如图4,在△ABC 中,BC =4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交 AC于F,点P是⊙A上的一点,且∠EPF=40,则图中阴影部分的面积是( )。 A.4-π B.4-π C.8-π D.8-π 15.如图5,圆内接四边形ABCD的BA、CD的延长线交于P,AC、BD交于E,则图中相似三角形有( )。 A.2对 B.3对 C.4对 D.5对 图3 图4 图5 二、填空题(每小题3分,共30分) 1.两圆相切,圆心距为9 cm,已知其中一圆半径为5 cm,另一圆半径为_____. 2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。 3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。 4.同圆的外切正六边形与内接正六边形的面积之比为_________。 5.矩形ABCD中,对角线AC=4,∠ACB=30,以直线AB为轴旋转一周得到圆柱的表面积是_________。 6.扇形的圆心角度数60,面积6π,则扇形的周长为_________。 7.圆的半径为4cm,弓形弧的度数为60,则弓形的面积为_________。 8.在半径为5cm的圆内有两条平行弦,一条弦长为6cm,另一条弦长为8cm,则两条平行弦之间的距离为_________。 9.如图6,△ABC内接于⊙O,AB=AC,∠BOC=100,MN是过B点而垂直于OB的直线,则∠ABM=________,∠CBN=________; 10.如图7,在矩形ABCD中,已知AB=8 cm,将矩形绕点A旋转90,到达A′B′C′D′的位置,则在转过程 中,边CD扫过的(阴影部分)面积S=_________。     图6 图7 三、解答下列各题(第9题11分,其余每小题8分,共75分) 1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。 (1)PO平分∠BPD; (2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF。 从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。 2.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD是⊙O的直径,∠D=40求:∠A O1B、∠ACB和∠CAD的度数。 3.已知:如图20,在△ABC中,∠BAC=120,AB=AC,BC=4,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。 4.如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于P,求证:ADDC=PABC。 5.如图⊿ABC中∠A=90,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。 6.如图,已知扇形OACB中,∠AOB=120,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长。 7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。 8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。 9.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五 边形ABCMN中以C点为顶点的相邻两边上的点,且BE = CD,DB交AE于P点。 ⑴求图①中,∠APD的度数; ⑵图②中,∠APD的度数为___________,图③中,∠APD的度数为___________; ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由。 B 组 一、选择题(每小题3分,共24分) 1.如图,把一个量角器放置在∠BAC的上面,则∠BAC的度数是( ) (A)30o.(B)60o.(C)15o.(D)20o. (第1题) (第2题) (第3题) 2.如图,实线部分是半径为9m的两条等弧组成的游泳池.若每条圆弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) (A)12m.(B)18m.(C)20m.(D)24m. 3.如图,P(,)是以坐标原点为圆心,5为半径的圆周上的点,若,都是整数,则这样的点共有( ) (A)4.(B)8.(C)12.(D)16. 4.用一把带有刻度尺的直角尺,(1)可以画出两条平行的直线a和b,如图①;(2)可以画出∠AOB的平分线OP,如图②;(3)可以检验工件的凹面是否为半圆,如图③;(4)可以量出一个圆的半径,如图④.这四种说法正确的有( ) 图① 图② 图③ 图④ (A)4个.(B)3个.(C)2个.(D)1个. 5.如图,这是中央电视台“曲苑杂谈”中的一幅图案,它是一扇形,其中∠AOB为120o,OC长为8cm,CA长为12cm,则阴影部分的面积为( ) (A).(B).(C).(D). (第5题) (第6题) (第7题) 6.如图,小华从一个圆形场地的A点出发,沿着与半径OA夹角为的方向行走,走到场地边缘B后,再沿与半径OB夹角为的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=56o,则的度数是( ) (A)52o.(B)60o.(C)72o.(D)76o. 7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是( ) (A)第①块.(B)第②块.(C)第③块.(D)第④块. 8.已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为( ) (A).(B).(C).(D). 二、填空题(每小题3分,共18分) 9.某单位拟建的大门示意图如图所示,上部是一段直径为10米的圆弧形,下部是矩形ABCD,其中AB=3.7米,BC=6米,则弧AD的中点到BC的距离是____________米. (第9题) (第10题) (第11题) 10.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为_____________cm. 11.如图,∠1的正切值等于_____________. 12.一个小熊的头像如图所示.图中反映出圆与圆的四种位置关系,但是其中有一种位置关系没有反映出来.请你写出这种位置关系,它是____________. (第12题) (第13题) (第14题) 13.如图,U型池可以看作一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为______________m.(边缘部分的厚度忽略不计,结果保留整数) 14.三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm)如图所示.则三个几何体的体积和为 cm3.(计算结果保留) 三、解答题(每小题6分,共18分) 15.如图,AB为⊙O直径,BC切⊙O于B,CO交⊙O交于D,AD的延长线交BC于E,若∠C = 25,求∠A的度数. 16.如图,AB是OD的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明. 17.如图,P为正比例函数图象上的一个动点,⊙P的半径为3,设点P的坐标为(,). (1)求⊙P与直线相切时点P的坐标; (2)请直接写出⊙P与直线相交、相离时的取值范围. 四、解答题(每小题8分,共24分) 18.从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm11cm,如图甲.用尺量出整卷卫生纸的半径()与纸筒内芯的半径(),分别为5.8cm和2.3cm,如图乙.那么该两层卫生纸的厚度为多少cm?(π取3.14,结果精确到0.001cm) 图① 图② 19.如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以cm/s的速度沿圆周逆时针运动,当点P回到A地立即停止运动. (1)如果∠POA=90o,求点P运动的时间; (2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由. 20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C. (1)用直尺画出该圆弧所在圆的圆心M的位置; (2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上; (3)在(2)的条件下,求证直线CD是⊙M的切线. 五、解答题(每小题8分,共16分) 21.如图,图①是一个小朋友玩“滚铁环”的游戏。铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图②.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=,且. (1)求点M离地面AC的高度MB(单位:厘米); (2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘米). 22.图①是用钢丝制作的一个几何探究具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=3.现将制作的几何探究工具放在平面直角坐标系中(如图②),然后点A在射线OX由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图③),当点B滑动至与点O重合时运动结束. (1)试说明在运动过程中,原点O始终在⊙G上; (2)设点C的坐标为(,),试求与之间的函数关系式,并写出自变量的取值范围; (3)在整个运动过程中,点C运动的路程是多少? 图① 图② 图③ 参考答案 A 组 一、1、C  2、B  3、B  4、D  5、C  6、B 7、C 8、D 9、C 10、A 11、D 12、A 13、D 14、B 15、C 二、1、4 cm或 14cm; 2、9π; 3、π,π; 4、4:3; 5、π;6、12+2π;7、(π-)cm2;8、7cm或1cm; 9、65,50;10、16πcm2。 三、 1、命题1,条件③④结论①②, 命题2,条件②③结论①④. 证明:命题1∵OE⊥CD , OF⊥AB, OE=OF, ∴AB=CD, PO平分∠BPD。 2、∠A O1B=140,∠ACB=70,∠CAD=130。 3、作AD⊥BC垂足为D, ∵AB=AC,∠BAC=120, ∴∠B=∠C=30. ∵BC=4, ∴BD=BC=2. 可得AD=2.又∵⊙A半径为2, ∴⊙A与BC相切。 4、连接BD,证△PAD∽△DCB。5、连接OD、OE,证△OEA≌△OED。6、12π。 7、4π-。 【解析】解:三条弧围成的阴影部份构成"三叶玫瑰",其总面积等于6个弓形的面 积之和.每个弓形的半径等于△ABC外接园的半径R=(2/sin60)/2 =2√3/3.每个弓形对应的园心角θ=π/3.每个弓形的弦长b=R=2√3/3. ∴一个弓形的面积S=(1/2)R^2(θ-sinθ) =(1/2)(2√3/3)^2[π/3-sin(π/3)] =(2/3)(π/3-√3/2) 于是三叶玫瑰的总面积=6S=4(π/3-√3/2)=2(2π-3√3)/3. 8、。提示:将两圆圆心与已知的点连接,用面积列方程求。 9、(1)∵△ABC是等边三角形 ∴AB=BC,∠ABE=∠BCD=60 ∵BE=CD ∴△ABE≌△BCD ∴∠BAE=∠CBD ∴∠APD=∠ABP+∠BAE=∠ABP+∠CBD=∠ABE=60 (2)90,108 (3)能.如图,点E、D分别是正n边形ABCM …中以C点为顶点的相邻两边上的点,且BE=CD,BD与AE交于点P,则∠APD的度数为 。 B 组 一、选择题 1.C 2.D 3.C 4.A 5.B 6.A 7.B 8.C 二、填空题 9.4.7 10.5 11. 12.相交 13.22 14.60 三、解答题 15.∵AB为⊙O的直径,BC切⊙O于B,∴∠ABC = 90,∵∠C = 25,∴∠BOC = 65o,∵∠A = ∠BOD,∴∠A = 32.5o. 16.解:OE=OF.证明:作OM⊥AM,垂足为M.根据垂径定理得AM=BM.∵AE=BF,∴AM-AE=BM-BF,即EM=FM.∴OE=OF. 17.(1)当⊙P与直线相切时,点P的坐标为(5,)或(,);(2)当时,⊙P与直线相交.当或时,⊙P与直线相离. 四、解答题 18.设该两层卫生纸的厚度为xm,则: ,解得,答:设两层卫生纸的厚度约为0.026cm. 19.(1)3s;(2)当点P运动2s时,∠POA=60o,∴OA=AP=AB,∴∠OPB=90o,∴BP与⊙O相切. 20.(1)略;(2),点D不在抛物线上;(3)略. 五、解答题 21.(1)过M作与AC平行的直线,与OA、FC分别相交于H、N.易求得铁环钩离地面的高度MB为
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:初级中学圆的学习知识重点情况总结加两套经典编辑试题(绝对超值).doc
链接地址:https://www.taowenge.com/p-2590559.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开