专题08 复数、算法与选修-2018年高考题和高考模拟题数学(文)分项版汇编 .doc
《专题08 复数、算法与选修-2018年高考题和高考模拟题数学(文)分项版汇编 .doc》由会员分享,可在线阅读,更多相关《专题08 复数、算法与选修-2018年高考题和高考模拟题数学(文)分项版汇编 .doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8复数、算法与选修1【2018年天津卷文】阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1 B. 2 C. 3 D. 4【答案】B选择B选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目的要求完成解答并验证2【2018年文北京卷】执行如图所示的程序框图,输出的s值为A. B. C. D. 【答案】B点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循
2、环,弄清进入或终止的循环条件、循环次数.3【2018年浙江卷】复数 (i为虚数单位)的共轭复数是A. 1+i B. 1i C. 1+i D. 1i【答案】B【解析】分析:先分母实数化化简复数,再根据共轭复数的定义确定结果.详解:,共轭复数为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数的相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.4【2018年文北京卷】在复平面内,复数的共轭复数对应的点位于A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D点睛:此题考查复
3、数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.5【2018年全国卷文】A. B. C. D. 【答案】D【解析】分析:由复数的乘法运算展开即可。详解: ,故选D.点睛:本题主要考查复数的四则运算,属于基础题。6【2018年全国卷II文】A. B. C. D. 【答案】D【解析】分析:根据公式,可直接计算得详解: ,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.7【2018年天津卷文】i是虚数单
4、位,复数_.【答案】4i 【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.8【2018年江苏卷】在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长【答案】直线l被曲线C截得的弦长为所以因此,直线l被曲线C截得的弦长为点睛:本题考查曲线的极坐标方程等基础知识,考查运算求解能力.9【2018年新课标I卷文】在直角坐标系中,曲线的方程为以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求的直角坐标方程; (2)若与有且仅有三个公共点,求
5、的方程【答案】 (1)(2)综上,所求的方程为详解:(1)由,得的直角坐标方程为(2)由(1)知是圆心为,半径为的圆由题设知,是过点且关于轴对称的两条射线记轴右边的射线为,轴左边的射线为由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与没有公共点 综上,所求的方程为点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线
6、的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.10【2018年全国卷文】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点(1)求的取值范围;(2)求中点的轨迹的参数方程【答案】(1)(2) 为参数, (2)的参数方程为为参数, 设,对应的参数分别为,则,且,满足于是,又点的坐标满足所以点的轨迹的参数方程是 为参数, 点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中
7、档题。11【2018年江苏卷】若x,y,z为实数,且x+2y+2z=6,求的最小值【答案】4点睛:本题考查柯西不等式等基础知识,考查推理论证能力.柯西不等式的一般形式:设a1,a2,an,b1,b2,bn为实数,则(aaa)(bbb)(a1b1a2b2anbn) 2,当且仅当bi0或存在一个数k,使aikbi(i1,2,n)时,等号成立12【2018年新课标I卷文】已知(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围【答案】(1).(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中
8、一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,即故不等式的解集为(2)当时成立等价于当时成立若,则当时;若,的解集为,所以,故综上,的取值范围为点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.13【2018年全国卷文】设函数(1)画出的图像;(2)当,求的最小值【答案】(1)见解析(2)详解:(1) 的
9、图像如图所示(2)由(1)知,的图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为点睛:本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题。14【2018年全国卷II文】设函数(1)当时,求不等式的解集;(2)若,求的取值范围【答案】(1),(2)详解:(1)当时,可得的解集为(2)等价于而,且当时等号成立故等价于由可得或,所以的取值范围是点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化
10、函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向优质模拟试题15【辽宁省葫芦岛市2018届二模】若复数满足(为虚数单位),则的共轭复数在复平面内对应的点所在的象限是( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】B点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题16【福建省厦门市2018届二模】复数满足,则在复平面内对应的点位于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D【解析】分析:先利用复数模的公式求得,然后两边同乘以,利用复数运算的乘法法则化简,即可得结果详解:,,在复平面内对应的点,在第四象
11、限,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.17【湖南省益阳市2018年5月联考】已知复数满足,则( )A. B. 5 C. D. 10【答案】C点睛:本题主要考查复数的运算和复数的模长。18【江西省南昌市2018届三模】已知,是虚数单位,若,则为( )A. 或 B. C. D. 不存在的实数【答案】A【解析】分析:根据共轭复数的定义先求出,再由,即可求出a详解:由题得,故,故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题08 复数、算法与选修-2018年高考题和高考模拟题数学文分项版汇编 专题 08 复数 算法 选修 2018 年高 考题 高考 模拟 数学 分项版 汇编
限制150内