2022年新人教版八年级数学下册知识点总结归纳,推荐文档 4.pdf
《2022年新人教版八年级数学下册知识点总结归纳,推荐文档 4.pdf》由会员分享,可在线阅读,更多相关《2022年新人教版八年级数学下册知识点总结归纳,推荐文档 4.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1 / 201八年级数学(下册)知识点总结二次根式【知识回顾】1. 二次根式:式子a( a0)叫做二次根式。2. 最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式;被开方数中不含分母;分母中不含根式。3. 同类二次根式:二次根式化成最简二次根式后,若被开方数相同, 则这几个二次根式就是同类二次根式。4. 二次根式的性质:(1) (a)2=a ( a0) ;(2)aa25. 二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式, 那么先解因式,?变形为积的形式,再移因式到根号外面
2、,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除) ,所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式ab=ab(a0,b0) ;bbaa(b0,a0) (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算【典型例题】1、概念与性质例 1 下列各式 1)22211,2)5,3)2,4)4,5)() ,6)1,7)2153xaaa,其中是二次根式的是 _(填序号)例 2、求下列二次根式
3、中字母的取值范围a(a0)a (a0)0 (a=0) ;名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 20 页 - - - - - - - - - 2 / 202(1)xx315; (2)22)-(x例 3、 在根式 1) 222;2);3);4)275xabxxyabc,最简二次根式是()A1) 2) B3) 4) C1) 3) D1) 4) 例 4、已知:的值。求代数式22,211881xyyxxyyxxxy例 5、 (2009 龙岩)已知数 a,b,若2()ab=
4、ba,则 ( ) A. ab B. a0,b0时,则:1aabb;1aabb例 8、比较53与23的大小。 5 、规律性问题例 1. 观察下列各式及其验证过程:, 验证:;验证:. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 20 页 - - - - - - - - - 4 / 204(1)按照上述两个等式及其验证过程的基本思路,猜想4415的变形结果,并进行验证;(2)针对上述各式反映的规律,写出用n(n 2,且 n 是整数 )表示的等式,并给出验证过程 . 名师资
5、料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 20 页 - - - - - - - - - 5 / 205勾股定理1. 勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为 c,那么 a2b2=c2。2. 勾股定理逆定理:如果三角形三边长a,b,c满足 a2b2=c2。 ,那么这个三角形是直角三角形。3. 经过证明被确认正确的命题叫做定理。我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 (例:勾股定理与勾股定理逆定理
6、)4. 直角三角形的性质(1) 、直角三角形的两个锐角互余。可表示如下:C=90 A+B=90 (2) 、在直角三角形中, 30角所对的直角边等于斜边的一半。A=30可表示如下:BC=21AB C=90(3) 、直角三角形斜边上的中线等于斜边的一半ACB=90 可表示如下:CD=21AB=BD=AD D为 AB的中点5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90 BDADCD?2ABADAC?2CD AB ABBDBC?26、常用关系式由三角形面积公式可得:AB?CD=AC?BC 名师资料总结 - - -精
7、品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 20 页 - - - - - - - - - 6 / 2067、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 3、勾股定理的逆定理:如果三角形的三边长a,b,c 有关系222cba,那么这个三角形是直角三角形。8、命题、定理、证明1、命题的概念判断一件事情的语句,叫做命题。理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判
8、断。2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。4、定理用推理的方法判断为正确的命题叫做定理。5、证明判断一个命题的正确性的推理过程叫做证明。6、证明的一般步骤(1)根据题意,画出图形。(2)根据题设、结论、结合图形,写出已知、求证。(3)经过分析,找出由已知推出求证的途径,写出证明过程。9、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。名师资料总结 - - -
9、精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 20 页 - - - - - - - - - 7 / 207(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分
10、割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。10 数学口诀 . 平方差公式 : 平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。完全平方公式 : 完全平方有三项, 首尾符号是同乡, 首平方、尾平方,首尾二倍放中央;首尾括号带平方,尾项符号随中央。四边形1四边形的内角和与外角和定理:(1)四边形的内角和等于360;(2)四边形的外角和等于360. 2多边形的内角和与外角和定理:(1)n 边形的内角和等于 (n-2)
11、180 ;(2)任意多边形的外角和等于360. ABCD1234ABCD名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 20 页 - - - - - - - - - 8 / 2083平行四边形的性质:因为 ABCD 是平行四边形.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4. 平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(A
12、BCD54321. 5. 矩形的性质:因为 ABCD 是矩形.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(6. 矩形的判定:边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形 ABCD 是矩形 . 7菱形的性质:因为 ABCD 是菱形.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(ABDOCCDBAOABDOCADBCADBCADBCOADBCO名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页
13、,共 20 页 - - - - - - - - - 9 / 2098菱形的判定:边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形 ABCD 是菱形 . 9正方形的性质:因为 ABCD 是正方形.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(CDAB(1)ABCDO(2) (3)10正方形的判定:一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形 ABCD 是正方形 . (3)ABCD 是矩形又AD=AB 四边形 ABCD 是正方形11等腰梯形的性质:因为 ABCD 是等腰梯形.3
14、21)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)(12等腰梯形的判定:对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321四边形 ABCD 是等腰梯形 (3)ABCD 是梯形且 AD BC AC=BD ABCD 四边形是等腰梯形CDBAOABCDOABCDOCDAB名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 20 页 - - - - - - - - - 10 / 201 014三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半 . 15梯
15、形中位线定理:梯形的中位线平行于两底, 并且等于两底和的一半 . 一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二定理:中心对称的有关定理1关于中心对称的两个图形是全等形. 2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. 3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 . 三 公式:1S菱形 =21ab=ch. (a、b 为菱形的对角线 ,c为菱形的边长,h 为 c 边上的高)2S平行四边形 =
16、ah. a为平行四边形的边, h 为 a 上的高)3S梯形 =21(a+b)h=Lh.(a、b 为梯形的底, h 为梯形的高 ,L 为梯形的中位线)四 常识:1若 n 是多边形的边数,则对角线条数公式是:2) 3n(n. 2规则图形折叠一般“出一对全等,一对相似”. 3如图:平行四边形、矩形、菱形、正方形的从属关系. EFDABCEDCBA平行四边形矩形菱形正方形名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 20 页 - - - - - - - - - 11 / 20
17、1 14常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 . 注意:线段有两条对称轴. 一次函数一. 常量、变量:在一个变化过程中 , 数值发生变化的量叫做变量 ;数值始终不变的量叫做常量。二、函数的概念:函数的定义:一般的,在一个变化过程中, 如果有两个变量x 与 y,并且对于 x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就说x 是自变量, y 是 x 的函数三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用
18、分式表示的函数,自变量的取值范围是使分母不为0 的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。用偶次根式表示的函数, 自变量的取值范围是使被开方数为非负数的一切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、 纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。)
19、注意:列表时自变量由小到大,相差一样,有时需对称。2、描点: (在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线: (按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如 y=kx(k 为常数,且 k0)的函数叫做正比例函数 . 其中 k 叫做比例系数。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 20 页 -
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年新人教版八年级数学下册知识点总结归纳 推荐文档 2022 新人 八年 级数 下册 知识点 总结 归纳 推荐 文档
限制150内