学而思寒假七年级尖子班讲义第1讲平行线四大模型.doc
目 录 Contents 第1讲 平行线四大模型1 第2讲 实数三大概念17 第3讲 平面直角坐标系33 第4讲 坐标系与面积初步51 第5讲 二元次方程组进阶67 第6讲 含参不等式(组)791 平行线四大模型知识目标 目标一 熟练掌握平行线四大模型的证明 目标二 熟练掌握平行线四大模型的应用目标三 掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回顾 平行线的判定与性质 l、平行线的判定 根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行 判定方法l: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行 判定方法2: 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行, 判定方法3: 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行,如上图:若已知1=2,则ABCD(同位角相等,两直线平行);若已知1=3,则ABCD(内错角相等,两直线平行);若已知1+ 4= 180,则ABCD(同旁内角互补,两直线平行)另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行2、 平行线的性质 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质性质1: 两条平行线被第三条直线所截,同位角相等 简称:两直线平行,同位角相等性质2: 两条平行线被第三条直线所截,内错角相等. 简称:两直线平行,内错角相等性质3: 两条平行线被第三条直线所截,同旁内角互补 简称:两直线平行,同旁内角互补本讲进阶 平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、 CD内部“铅笔”模型结论1:若ABCD,则P+AEP+PFC=3 60;结论2:若P+AEP+PFC= 360,则ABCD. 模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、 CD内部“猪蹄”模型结论1:若ABCD,则P=AEP+CFP;结论2:若P=AEP+CFP,则ABCD.模型三“臭脚”模型点P在EF右侧,在AB、 CD外部“臭脚”模型结论1:若ABCD,则P=AEP-CFP或P=CFP-AEP;结论2:若P=AEP-CFP或P=CFP-AEP,则ABCD.模型四“骨折”模型点P在EF左侧,在AB、 CD外部“骨折”模型结论1:若ABCD,则P=CFP-AEP或P=AEP-CFP;结论2:若P=CFP-AEP或P=AEP-CFP,则ABCD. 巩固练习 平行线四大模型证明(1) 已知AE / CF ,求证P +AEP +PFC = 360 .(2) 已知P=AEP+CFP,求证AECF(3) 已知AECF,求证P=AEP-CFP. (4) 已知 P= CFP -AEP ,求证AE /CF .模块一 平行线四大模型应用例1(1) 如图,ab,M、N分别在a、b上,P为两平行线间一点,那么l+2+3= (2) 如图,ABCD,且A=25,C=45,则E的度数是 (3) 如图,已知ABDE,ABC=80,CDE =140,则BCD= . (4) 如图,射线ACBD,A= 70,B= 40,则P= 练(1) 如图所示,ABCD,E=37,C= 20,则EAB的度数为 (2) (七一中学2015-2016七下3月月考) 如图,ABCD,B=30,O=C则C= .例2如图,已知ABDE,BF、 DF分别平分ABC、CDE,求C、 F的关系.练如图,已知ABDE,FBC=ABF,FDC=FDE. (1) 若n=2,直接写出C、F的关系 ;(2) 若n=3,试探宄C、F的关系;(3) 直接写出C、F的关系 (用含n的等式表示).例3如图,已知ABCD,BE平分ABC,DE平分ADC求证:E= 2 (A+C) .练如图,己知ABDE,BF、DF分别平分ABC、CDE,求C、F的关系.例4如图,3=1+2,求证:A+B+C+D= 180练(武昌七校 2015-2016 七下期中)如图,ABBC,AE平分BAD交BC于E,AEDE,l+2= 90,M、N分别是BA、 CD的延长线上的点,EAM和EDN的平分线相交于点 F则F的度数为( )A. 120 B. 135 C. 145 D. 150模块二 平行线四大模型构造例5如图,直线ABCD,EFA= 30,FGH= 90,HMN=30,CNP= 50,则GHM= .练如图,直线ABCD,EFG =100,FGH =140,则AEF+ CHG= . 例6 已知B =25,BCD=45,CDE =30,E=l0,求证:ABEF练已知ABEF,求l-2+3+4的度数.(1)如图(l),已知MA1NAn,探索A1、A2、An,B1、B2Bn-1之间的 关系(2)如图(2),己知MA1NA4,探索A1、A2、A3、A4,B1、B2之间的关系(3)如图(3),已知MA1NAn,探索A1、A2、An之间的关系如图所示,两直线ABCD平行,求1+2+3+4+5+6挑战压轴题(粮道街20152016 七下期中)如图1,直线ABCD,P是截线MN上的一点,MN与CD、AB分别交于E、F(1) 若EFB=55,EDP= 30,求MPD的度数;(2) 当点P在线段EF上运动时,CPD与ABP的平分线交于Q,问:是否为定值?若是定值,请求出定值;若不是,说明其范围;(3) 当点P在线段EF的延长线上运动时,CDP与ABP的平分线交于Q,问的值足否定值,请在图2中将图形补充完整并说明理由第一讲 平行线四大模型(课后作业)1.如图,AB / CD / EF , EHCD于H ,则BAC+ACE +CEH等于( ). A. 180 B. 270 C. 360 D. 4502(武昌七校2015-2016七下期中) 若ABCD,CDF=CDE,ABF=ABE,则E:F=( ) A2:1 B3:1 C4:3 D3:23.如图3,己知AEBD,1=130,2=30,则C= .4.如图,已知直线ABCD,C =115,A= 25,则E= 5 如阁所示,ABCD,l=l l0,2=120,则= .6 如图所示,ABDF,D =116,DCB=93,则B= . 7 如图,将三角尺的直角顶点放在直线a上,ab.1=50,2 =60,则3的度数为 .8 如图,ABCD,EPFP, 已知1=30,2=20则F的度数为 9.如图,若ABCD, BEF=70,求B+F+C的度数.10已知,直线ABCD (1)如图l,A、C、AEC之间有什么关系?请说明理由; (2)如图2,AEF、EFC、FCD之间有什么关系?请说明理由; (3)如图3,A、E、F、G、H、O、C之间的关是 . 根保管员应经常了解设备情况,凡符合下列条件之一的备件,应及时处理,办理注销手续:因设备报废、设备技术改造或设备外调而导致不再需要的备件,要及时销售和处理做到尽可能回收资金,不随意浪费。因保管不善而造成的备件废品,且经管理员组织有关技术人员鉴定无修复价值的,要查明原因,提出防范措施和处理意见,批准后报废。
收藏
编号:2598365
类型:共享资源
大小:202.52KB
格式:DOC
上传时间:2020-04-23
8
金币
- 关 键 词:
-
寒假
年级
尖子
讲义
平行线
四大
模型
- 资源描述:
-
\\
目 录
Contents
第1讲 平行线四大模型……………………………………………………………1
第2讲 实数三大概念………………………………………………………………17
第3讲 平面直角坐标系……………………………………………………………33
第4讲 坐标系与面积初步…………………………………………………………51
第5讲 二元—次方程组进阶………………………………………………………67
第6讲 含参不等式(组)…………………………………………………………79
1 平行线四大模型
知识目标
目标一 熟练掌握平行线四大模型的证明
目标二 熟练掌握平行线四大模型的应用
目标三 掌握辅助线的构造方法,熟悉平行线四大模型的构造
秋季回顾 平行线的判定与性质
l、平行线的判定
根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.
判定方法l:
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简称:同位角相等,两直线平行.
判定方法2:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简称:内错角相等,两直线平行,
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简称:同旁内角互补,两直线平行,
如上图:
若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);
若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);
若已知∠1+ ∠4= 180,则AB∥CD(同旁内角互补,两直线平行).
另有平行公理推论也能证明两直线平行:
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
2、 平行线的性质
利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反
过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同
旁内角也有相应的数量关系,这就是平行线的性质.
性质1:
两条平行线被第三条直线所截,同位角相等.
简称:两直线平行,同位角相等
性质2:
两条平行线被第三条直线所截,内错角相等.
简称:两直线平行,内错角相等
性质3:
两条平行线被第三条直线所截,同旁内角互补.
简称:两直线平行,同旁内角互补
本讲进阶 平行线四大模型
模型一“铅笔”模型
点P在EF右侧,在AB、 CD内部
“铅笔”模型
结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60;
结论2:若∠P+∠AEP+∠PFC= 360,则AB∥CD.
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、 CD内部
“猪蹄”模型
结论1:若AB∥CD,则∠P=∠AEP+∠CFP;
结论2:若∠P=∠AEP+∠CFP,则AB∥CD.
模型三“臭脚”模型
点P在EF右侧,在AB、 CD外部
“臭脚”模型
结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;
结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.
模型四“骨折”模型
点P在EF左侧,在AB、 CD外部
“骨折”模型
结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;
结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.
巩固练习 平行线四大模型证明
(1) 已知AE // CF ,求证∠P +∠AEP +∠PFC = 360
.
(2) 已知∠P=∠AEP+∠CFP,求证AE∥CF.
(3) 已知AE∥CF,求证∠P=∠AEP-∠CFP.
(4) 已知 ∠P= ∠CFP -∠AEP ,求证AE //CF .
模块一 平行线四大模型应用
例1
(1) 如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .
(2) 如图,AB∥CD,且∠A=25,∠C=45,则∠E的度数是 .
(3) 如图,已知AB∥DE,∠ABC=80,∠CDE =140,则∠BCD= .
(4) 如图,射线AC∥BD,∠A= 70,∠B= 40,则∠P= .
练
(1) 如图所示,AB∥CD,∠E=37,∠C= 20,则∠EAB的度数为 .
(2) (七一中学2015-2016七下3月月考)
如图,AB∥CD,∠B=30,∠O=∠C.则∠C= .
例2
如图,已知AB∥DE,BF、 DF分别平分∠ABC、∠CDE,求∠C、 ∠F的关系.
练
如图,已知AB∥DE,∠FBC=∠ABF,∠FDC=∠FDE.
(1) 若n=2,直接写出∠C、∠F的关系 ;
(2) 若n=3,试探宄∠C、∠F的关系;
(3) 直接写出∠C、∠F的关系 (用含n的等式表示).
例3
如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.求证:∠E= 2 (∠A+∠C) .
练
如图,己知AB∥DE,BF、DF分别平分∠ABC、∠CDE,求∠C、∠F的关系.
例4
如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180.
练
(武昌七校 2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90,M、N分别是BA、 CD的延长线上的点,∠EAM和∠EDN的平分线相交于点 F则∠F的度数为( ).
A. 120 B. 135 C. 145 D. 150
模块二 平行线四大模型构造
例5
如图,直线AB∥CD,∠EFA= 30,∠FGH= 90,∠HMN=30,∠CNP= 50,则
∠GHM= .
练
如图,直线AB∥CD,∠EFG =100,∠FGH =140,则∠AEF+ ∠CHG= .
例6
已知∠B =25,∠BCD=45,∠CDE =30,∠E=l0,求证:AB∥EF.
练
已知AB∥EF,求∠l-∠2+∠3+∠4的度数.
(1)如图(l),已知MA1∥NAn,探索∠A1、∠A2、…、∠An,∠B1、∠B2…∠Bn-1之间的
关系.
(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.
(3)如图(3),已知MA1∥NAn,探索∠A1、∠A2、…、∠An之间的关系.
如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.
挑战压轴题
(粮道街2015—2016 七下期中)
如图1,直线AB∥CD,P是截线MN上的一点,MN与CD、AB分别交于E、F.
(1) 若∠EFB=55,∠EDP= 30,求∠MPD的度数;
(2) 当点P在线段EF上运动时,∠CPD与∠ABP的平分线交于Q,问:是否为定值?若是定值,请求出定值;若不是,说明其范围;
(3) 当点P在线段EF的延长线上运动时,∠CDP与∠ABP的平分线交于Q,问的值足否定值,请在图2中将图形补充完整并说明理由.
第一讲 平行线四大模型(课后作业)
1.如图,AB // CD // EF , EH⊥CD于H ,则∠BAC+∠ACE +∠CEH等于( ).
A. 180 B. 270 C. 360 D. 450
2.(武昌七校2015-2016七下期中)
若AB∥CD,∠CDF=∠CDE,∠ABF=∠ABE,则∠E:∠F=( ).
A.2:1 B.3:1 C.4:3 D.3:2
3.如图3,己知AE∥BD,∠1=130,∠2=30,则∠C= .
4.如图,已知直线AB∥CD,∠C =115,∠A= 25,则∠E= .
5. 如阁所示,AB∥CD,∠l=l l0,∠2=120,则∠α= .
6. 如图所示,AB∥DF,∠D =116,∠DCB=93,则∠B= .
7. 如图,将三角尺的直角顶点放在直线a上,a∥b.∠1=50,∠2 =60,则∠3的度数为 .
8. 如图,AB∥CD,EP⊥FP, 已知∠1=30,∠2=20.则∠F的度数为 .
9.如图,若AB∥CD, ∠BEF=70,求∠B+∠F+∠C的度数.
10.已知,直线AB∥CD.
(1)如图l,∠A、∠C、∠AEC之间有什么关系?请说明理由;
(2)如图2,∠AEF、∠EFC、∠FCD之间有什么关系?请说明理由;
(3)如图3,∠A、∠E、∠F、∠G、∠H、∠O、∠C之间的关是 .
根保管员应经常了解设备情况,凡符合下列条件之一的备件,应及时处理,办理注销手续:因设备报废、设备技术改造或设备外调而导致不再需要的备件,要及时销售和处理做到尽可能回收资金,不随意浪费。因保管不善而造成的备件废品,且经管理员组织有关技术人员鉴定无修复价值的,要查明原因,提出防范措施和处理意见,批准后报废。
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。