小学数学速算巧算.doc
-/小学数学速算与巧算方法例解速算与巧算 在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=59 中间数是5=45 共9个数(2)计算:1+3+5+7+9=55 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=65 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=95 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=125 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)5=115=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)4=204=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=206+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=206=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=1005+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=1005=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万,就把其中的一个数叫做另一个数的“补数”。如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。又如:11+89=100,3367=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。如: 8765512345, 4680253198,8736212638,下面讲利用“补数”巧算加法,通常称为“凑整法”。2.互补数先加。例1 巧算下面各题:36+87+6499+136101 136197263928解:式=(3664)87=10087=187式=(99101)136=200+136=336式=(1361639)(97228)=2000+1000=30003.拆出补数来先加。例2 188873 548996 9898203解:式=(188+12)+(873-12)(熟练之后,此步可略)200+861=1061式=(548-4)(9964)=544+1000=1544式=(9898102)(203-102)=10000+101=101014.竖式运算中互补数先加。如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。例 3 300-73-27 1000-90-80-20-10解:式= 300-(73 27)300-100=200式=1000-(90802010)1000-2008002.先减去那些与被减数有相同尾数的减数。例4 4723-(723189) 2356-159-256解:式=4723-723-1894000-189=3811式=2356-256-1592100-159=19413.利用“补数”把接近整十、整百、整千的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。例 5 506-397323-189467997987-178-222-390解:式=5006-400+3(把多减的 3再加上)=109式=323-200+11(把多减的11再加上)=123+11134式=4671000-3(把多加的3再减去)1464式=987-(178222)-390987-400-400+10=197三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a(bcd)abcda-(bad)a-b-c-da-(b-c)a-b+c例6 100(102030) 100-(1020+3O) 100-(30-10)解:式=100102030=160式=100-10-20-30=40式=100-301080例7 计算下面各题: 100102030 100-10-20-30 100-3010解:式=100(10+20+30)=10060=160式=100-(1020+30)100-60=40式=100-(30-10)=100-20=802.带符号“搬家”例8 计算 32546-12554解:原式=325-12546+54(325-125)+(4654)=200+100300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-93解:原式=9-92+3=54.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。例10 计算 78+768382+778079856401.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:52=10254=1001258=1000例1 计算123425 125282554解:式=123(425)=12310012300式=(1258)(254)(52)=100010010=10000002.分解因数,凑整先乘。例 2计算 2425 56125 1255325解:式=6(425)=6100=600式=78125=7(8125)=71000=7000式=1255485=(1258)(554)=1000100=1000003.应用乘法分配律。例3 计算 17534175666712+67356752+6解:式=175(34+66)=175100=17500式=67(1235521) 671006700(原式中最后一项67可看成 671)例4 计算 123101 12399解:式=123(1001)=12310012312300123=12423式=123(100-1)=12300-123=121774.几种特殊因数的巧算。例5 一个数10,数后添0;一个数100,数后添00;一个数1000,数后添000;以此类推。如:1510=15015100=150015100015000例6 一个数9,数后添0,再减此数;一个数99,数后添00,再减此数;一个数999,数后添000,再减此数; 以此类推。如:129120-12108129912001211881299912000-12=11988例7 一个偶数乘以5,可以除以2添上0。如:6530165801165=580。例8 一个数乘以11,“两头一拉,中间相加”。如 2222112444224561127016例9 一个偶数乘以15,“加半添0”.2415(24+12)10360因为2415 24(10+5)24(10102)=2410+24102(乘法分配律)2410+24210(带符号搬家)(24+242)10(乘法分配律)例10 个位为5的两位数的自乘:十位数字(十位数字加1)100+25如1515=1(1+1)100+25=2252525=2(2+1)100+25=6253535=3(3+1)100+25=12254545=4(4+1)100+25=20255555=5(5+1)100+25=302565656(6+1)100+25=42257575=7(7+1)100+2556258585=8(8+1)100+25=722595959(9+1)100259025还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看算得快一书。二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。例11 计算1105330025 44000125解:1105=(1102)(52)22010=22330025(33004)(254)13200100132 44000125=(440008)(1258)35200010003522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。例12 86427548645427=1627=4323.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。例13 13959 215-65209024-4822418712-6312-5212解:139+59=(135)9=1892215-65(21-6)5155=3209024-48224(2090-482)241608246718712-6312-5212(187-63-52)127212=64.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。即a(bc)=abc 从左往右看是去括号,a(bc)abc 从右往左看是添括号。a(bc)abc例14 1320500250400012585600(286)372162542997729(8181)解: 13205002501320(500250)=132022640400012584000(1258)4000100045600(286)=5600286=2006=120037216254=372(16254)37231242997729(8181)29977298181(299781)(72981)379333例1 计算999999999999999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成10001去计算.这是小学数学中常用的一种技巧. 999999999999999(101)(100-1)(10001)(10000-1) (100000-1)10100100010000100000-5111110-5111105.例2 计算19999919999199919919解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 1991200) 19999919999199919919(199991)(199991)(19991)(1991) (191)520000020000200020020-5222220-522225.例3 计算(1351989)(2461988)解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:从2到1988共有994个偶数,凑成497个1990.19904979951990497995.例4 计算 389387383385384386388解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数. 38938738338538438638839071375642730282702.解法2:也可以选380为基准数,则有 389387383385384386388380797354682660422702.例5 计算(494249434938493949414943)6解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数. (494249434938493949414943)6(49406232113)6(494066)6(这里没有把49406先算出来,而是运49406666运用了除法中的巧算方法)494014941.例6 计算54999945解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了. 54999945(5445)999999999999(199)991009900.例7 计算 9999222233333334解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了. 99992222333333343333322223333333433336666333333343333(66663334)33331000033330000.例8 1999999999解法1:199999999910009999999991000999(1999)100099910001000(9991)100010001000000.解法2:19999999991999999(1000-1)1999999000-999(1999-999)99900010009990001000000.有多少个零.总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧。
收藏
编号:2601754
类型:共享资源
大小:23.77KB
格式:DOC
上传时间:2020-04-23
8
金币
- 关 键 词:
-
小学
数学
速算
- 资源描述:
-
-/
小学数学速算与巧算方法例解
速算与巧算
在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算
1.计算:(1)24+44+56
(2)53+36+47
解:(1)24+44+56=24+(44+56)
=24+100=124
这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.
(2)53+36+47=53+47+36
=(53+47)+36=100+36=136
这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.
2.计算:(1)96+15
(2)52+69
解:(1)96+15=96+(4+11)
=(96+4)+11=100+11=111
这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.
(2)52+69=(21+31)+69
=21+(31+69)=21+100=121
这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.
3.计算:(1)63+18+19
(2)28+28+28
解:(1)63+18+19
=60+2+1+18+19
=60+(2+18)+(1+19)
=60+20+20=100
这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.
(2)28+28+28
=(28+2)+(28+2)+(28+2)-6
=30+30+30-6=90-6=84
这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.
二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变
计算:(1)45-18+19
(2)45+18-19
解:(1)45-18+19=45+19-18
=45+(19-18)=45+1=46
这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.
(2)45+18-19=45+(18-19)
=45-1=44
这样想:加18减19的结果就等于减1.
三、计算等差连续数的和
相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等等都是等差连续数.
1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:
(1)计算:1+2+3+4+5+6+7+8+9
=59 中间数是5
=45 共9个数
(2)计算:1+3+5+7+9
=55 中间数是5
=25 共有5个数
(3)计算:2+4+6+8+10
=65 中间数是6
=30 共有5个数
(4)计算:3+6+9+12+15
=95 中间数是9
=45 共有5个数
(5)计算:4+8+12+16+20
=125 中间数是12
=60 共有5个数
2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:
(1)计算:
1+2+3+4+5+6+7+8+9+10
=(1+10)5=115=55
共10个数,个数的一半是5,首数是1,末数是10.
(2)计算:
3+5+7+9+11+13+15+17
=(3+17)4=204=80
共8个数,个数的一半是4,首数是3,末数是17.
(3)计算:
2+4+6+8+10+12+14+16+18+20
=(2+20)5=110
共10个数,个数的一半是5,首数是2,末数是20.
四、基准数法
(1)计算:23+20+19+22+18+21
解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.
23+20+19+22+18+21
=206+3+0-1+2-2+1
=120+3=123
6个加数都按20相加,其和=206=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.
(2)计算:102+100+99+101+98
解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.
102+100+99+101+98
=1005+2+0-1+1-2=500
方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)
102+100+99+101+98
=98+99+100+101+102
=1005=500
可发现这是一个等差连续数的求和问题,中间数是100,个数是5.
加法中的巧算
1.什么叫“补数”?
两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,
2+8=10,4+6=10,
5+5=10。
又如:11+89=100,33+67=100,
22+78=100,44+56=100,
55+45=100,
在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,
87362→12638,…
下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1 巧算下面各题:
①36+87+64②99+136+101
③ 1361+972+639+28
解:①式=(36+64)+87
=100+87=187
②式=(99+101)+136
=200+136=336
③式=(1361+639)+(972+28)
=2000+1000=3000
3.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203
解:①式=(188+12)+(873-12)(熟练之后,此步可略)
=200+861=1061
②式=(548-4)+(996+4)
=544+1000=1544
③式=(9898+102)+(203-102)
=10000+101=10101
4.竖式运算中互补数先加。
如:
二、减法中的巧算
1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27
② 1000-90-80-20-10
解:①式= 300-(73+ 27)
=300-100=200
②式=1000-(90+80+20+10)
=1000-200=800
2.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)
② 2356-159-256
解:①式=4723-723-189
=4000-189=3811
②式=2356-256-159
=2100-159
=1941
3.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例 5 ①506-397
②323-189
③467+997
④987-178-222-390
解:①式=500+6-400+3(把多减的 3再加上)
=109
②式=323-200+11(把多减的11再加上)
=123+11=134
③式=467+1000-3(把多加的3再减去)
=1464
④式=987-(178+222)-390
=987-400-400+10=197
三、加减混合式的巧算
1.去括号和添括号的法则
在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:
a+(b+c+d)=a+b+c+d
a-(b+a+d)=a-b-c-d
a-(b-c)=a-b+c
例6 ①100+(10+20+30)
② 100-(10+20+3O)
③ 100-(30-10)
解:①式=100+10+20+30
=160
②式=100-10-20-30
=40
③式=100-30+10
=80
例7 计算下面各题:
① 100+10+20+30
② 100-10-20-30
③ 100-30+10
解:①式=100+(10+20+30)
=100+60=160
②式=100-(10+20+30)
=100-60=40
③式=100-(30-10)
=100-20=80
2.带符号“搬家”
例8 计算 325+46-125+54
解:原式=325-125+46+54
=(325-125)+(46+54)
=200+100=300
注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉
例9 计算9+2-9+3
解:原式=9-9+2+3=5
4.找“基准数”法
几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10 计算 78+76+83+82+77+80+79+85
=640
1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:
52=10
254=100
1258=1000
例1 计算①123425
② 125282554
解:①式=123(425)
=123100=12300
②式=(1258)(254)(52)
=100010010=1000000
2.分解因数,凑整先乘。
例 2计算① 2425
② 56125
③ 1255325
解:①式=6(425)
=6100=600
②式=78125=7(8125)
=71000=7000
③式=1255485=(1258)(554)
=1000100=100000
3.应用乘法分配律。
例3 计算① 17534+17566
②6712+6735+6752+6
解:①式=175(34+66)
=175100=17500
②式=67(12+35+52+1)
= 67100=6700
(原式中最后一项67可看成 671)
例4 计算① 123101 ② 12399
解:①式=123(100+1)=123100+123
=12300+123=12423
②式=123(100-1)
=12300-123=12177
4.几种特殊因数的巧算。
例5 一个数10,数后添0;
一个数100,数后添00;
一个数1000,数后添000;
以此类推。
如:1510=150
15100=1500
151000=15000
例6 一个数9,数后添0,再减此数;
一个数99,数后添00,再减此数;
一个数999,数后添000,再减此数; …
以此类推。
如:129=120-12=108
1299=1200-12=1188
12999=12000-12=11988
例7 一个偶数乘以5,可以除以2添上0。
如:65=30
165=80
1165=580。
例8 一个数乘以11,“两头一拉,中间相加”。
如 222211=24442
245611=27016
例9 一个偶数乘以15,“加半添0”.
2415
=(24+12)10
=360
因为
2415
= 24(10+5)
=24(10+102)
=2410+24102(乘法分配律)
=2410+24210(带符号搬家)
=(24+242)10(乘法分配律)
例10 个位为5的两位数的自乘:十位数字(十位数字加1)100+25
如1515=1(1+1)100+25=225
2525=2(2+1)100+25=625
3535=3(3+1)100+25=1225
4545=4(4+1)100+25=2025
5555=5(5+1)100+25=3025
6565=6(6+1)100+25=4225
7575=7(7+1)100+25=5625
8585=8(8+1)100+25=7225
9595=9(9+1)100+25=9025
还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。
二、除法及乘除混合运算中的巧算
1.在除法中,利用商不变的性质巧算
商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
例11 计算①1105②330025
③ 44000125
解:①1105=(1102)(52)
=22010=22
②330025=(33004)(254)
=13200100=132
③ 44000125=(440008)(1258)
=3520001000=352
2.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例12 8642754
=8645427
=1627
=432
3.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。
例13① 139+59 ②215-65
③209024-48224
④18712-6312-5212
解:①139+59=(13+5)9
=189=2
②215-65=(21-6)5
=155=3
③209024-48224=(2090-482)24
=160824=67
④18712-6312-5212
=(187-63-52)12
=7212=6
4.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。
即a(bc)=abc 从左往右看是去括号,
a(bc)=abc 从右往左看是添括号。
a(bc)=abc
例14 ①1320500250
②40001258
③5600(286)
④37216254
⑤2997729(8181)
解:① 1320500250=1320(500250)
=13202=2640
②40001258=4000(1258)
=40001000=4
③5600(286)=5600286
=2006=1200
④37216254=372(16254)
=3723=124
⑤2997729(8181)=29977298181
=(299781)(72981)=379
=333
例1 计算9+99+999+9999+99999
解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧.
9+99+999+9999+99999
=(10-1)+(100-1)+(1000-1)+(10000-1)
+(100000-1)
=10+100+1000+10000+100000-5
=111110-5
=111105.
例2 计算199999+19999+1999+199+19
解:此题各数字中,除最高位是1外,其余都是9,仍使用凑整法.不过这里是加1凑整.(如 199+1=200)
199999+19999+1999+199+19
=(19999+1)+(19999+1)+(1999+1)+(199+1)
+(19+1)-5
=200000+20000+2000+200+20-5
=222220-5
=22225.
例3 计算(1+3+5+…+1989)-(2+4+6+…+1988)
解法2:先把两个括号内的数分别相加,再相减.第一个括号内的数相加的结果是:
从1到1989共有995个奇数,凑成497个1990,还剩下995,第二个括号内的数相加的结果是:
从2到1988共有994个偶数,凑成497个1990.
1990497+995—1990497=995.
例4 计算 389+387+383+385+384+386+388
解法1:认真观察每个加数,发现它们都和整数390接近,所以选390为基准数.
389+387+383+385+384+386+388
=3907—1—3—7—5—6—4—
=2730—28
=2702.
解法2:也可以选380为基准数,则有
389+387+383+385+384+386+388
=3807+9+7+3+5+4+6+8
=2660+42
=2702.
例5 计算(4942+4943+4938+4939+4941+4943)6
解:认真观察可知此题关键是求括号中6个相接近的数之和,故可选4940为基准数.
(4942+4943+4938+4939+4941+4943)6
=(49406+2+3—2—1+1+3)6
=(49406+6)6(这里没有把49406先算出来,而是运
=494066+66运用了除法中的巧算方法)
=4940+1
=4941.
例6 计算54+9999+45
解:此题表面上看没有巧妙的算法,但如果把45和54先结合可得99,就可以运用乘法分配律进行简算了.
54+9999+45
=(54+45)+9999
=99+9999
=99(1+99)
=99100
=9900.
例7 计算 99992222+33333334
解:此题如果直接乘,数字较大,容易出错.如果将9999变为33333,规律就出现了.
99992222+33333334
=333332222+33333334
=33336666+33333334
=3333(6666+3334)
=333310000
=33330000.
例8 1999+999999
解法1:1999+999999
=1000+999+999999
=1000+999(1+999)
=1000+9991000
=1000(999+1)
=10001000
=1000000.
解法2:1999+999999
=1999+999(1000-1)
=1999+999000-999
=(1999-999)+999000
=1000+999000
=1000000.
有多少个零.
总之,要想在计算中达到准确、简便、迅速,必须付出辛勤的劳动,要多练习,多总结,只有这样才能做到熟能生巧。
展开阅读全文
![提示](https://www.taowenge.com/images/bang_tan.gif)
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。