小学数学归一问答应用题.doc

收藏

编号:2603874    类型:共享资源    大小:36.52KB    格式:DOC    上传时间:2020-04-23
8
金币
关 键 词:
小学 数学 问答 应用题
资源描述:
.* 三、归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量份数=1份数量 1份数量所占份数=所求几份的数量 另一总量(总量份数)=所求份数 【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。 例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷? 例3:王师傅用3小时加工了42个零件,照这样计算,8小时可以加工多少个零件? 例4:王师傅用3小时加工了42个零件,照这样计算,几小时可以加工224个零件? 例5:工程队用3台压路机5小时可以压路3000米。照这样计算,5台压路机8小时可以压路多少米? 例6 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 例7: 3台车床4小时可以加工零件180个。照这样计算,5台车床加工600个零件要几小时? 例8: 某工人生产一种零件,13分钟生产45个,照这样计算,生产180个零件需要多少分钟? 现在你可以解归一问题了,找一些题练练吧。解归一问题时要记住:先求出“单一量”;分析是“顺归一”还是“逆归一”;注意有时要用倍比方法来解。 通过分析和解题,我们得到解归一问题的基本方法: ①先求出“单一量”。 ②顺归一:单一量份数=总量 ③逆归一:总量单一量=份数 运用上面的方法我们就可以顺利解题: 鸡兔同笼 例题1.笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有多少只? 解题方法: ① 假设法:如果笼子里都是鸡,那么就有82=16只脚,这样就多出26-16=10只脚;一只兔子比一只鸡多2只脚,也就是有102=5只兔。所以笼子里有3只鸡,5只兔。 (总脚数-总头数2)2=兔子数 总头数-兔子数=鸡数 ② 假设法:如果笼子里都是兔,那么就有84=32只脚,这样就少了32-26=6只脚;一只鸡比一只兔子少2只脚,也就是有62=3只鸡。所以笼子里有3只鸡,5只兔。 (总头数4-总脚数)2=鸡数 总头数-鸡数=兔子数 ③ 抬腿法:假如让鸡抬起一只脚,兔子抬起两只脚,还有262=13只脚;这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1;这时脚的总数与头的总数之差13-8=5,就是兔子的只数。 总脚数2-总头数=兔子数. 总头数-兔子数=鸡数 ④ 解方程法:解:设有χ只兔子,那么就有(8-χ)只鸡。 鸡兔总共26只脚,就是:4χ+2(8-χ)=26 则χ=5 8-5=3只 例题2. 买一些4分和8分的邮票,共花6元8角。已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?   解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.   (680-840)(8+4)=30(张),   这就知道,余下的邮票中,8分和4分的各有30张。   因此8分邮票有   40+30=70(张).   答:买了8分的邮票70张,4分的邮票30张。   也可以用任意假设一个数的办法.   解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分。以"分"作为计算单位,此时邮票总值是   420+860=560.   比680少,因此还要增加邮票。为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是   (680-420-860)(4+8)=10(张).   因此4分有20+10=30(张),8分有60+10=70(张).   例3. 一项工程,如果全是晴天,15天可以完成。倘若下雨,雨天比晴天多3天,工程要多少天才能完成   解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有   (150-83)(10+8)= 7(天).   雨天是7+3=10天,总共   7+10=17(天).   答:这项工程17天完成。   请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个。这说明了例7,例8与上一节基本问题之间的关系.   总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢  例4.鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?   解一:假如再补上28只鸡脚,也就是再有鸡282=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚42=2(倍),于是鸡的只数是兔的只数的2倍。兔的只数是   (100+282)(2+1)=38(只).   鸡是   100-38=62(只).   答:鸡62只,兔38只。   当然也可以去掉兔284=7(只).兔的只数是   (100-284)(2+1)+7=38(只).   也可以用任意假设一个数的办法。   解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是   450-250=100,   比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是   (100-28)(4+2)=12(只).   兔只数是   50-12=38(只). 另外,还存在下面这样的问题:总头数换成"两数之差",总脚数也换成"两数之差". 例5. 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字。有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?   解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差   1354+20=280(字).   每首字数相差   74-54=8(字).   因此,七言绝句有   280(28-20)=35(首).   五言绝句有   35+13=48(首).   答:五言绝句48首,七言绝句35首。   解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是2023=460(字),2810=280(字),五言绝句的字数,反而多了   460-280=180(字).   与题目中"少20字"相差   180+20=200(字).   说明假设诗的首数少了。为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句的首数要比假设增加   2008=25(首).   五言绝句有   23+25=48(首).   七言绝句有   10+25=35(首). 例6 .从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米。从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米?   解:把来回路程452=90(千米)算作全程。去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米。现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是   (90-421)(5-4)=6(小时).   单程平路行走时间是62=3(小时).   从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是:   45-53=30(千米).   又是一个"鸡兔同笼"问题。从甲地至乙地,上坡行走的时间是:   (67-30)(6-3)=4(小时).   行走路程是34=12(千米).   下坡行走的时间是7-4=3(小时).行走路程是63=18(千米).   答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米。 例7. 学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍。已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元。问三种笔各有多少支?   解:从条件"铅笔数量是圆珠笔的4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作   (0.604+2.7)5=1.02(元).   现在转化成价格为1.02和6.3两种笔。用"鸡兔同笼"公式可算出,钢笔支数是   (300-1.02232)(6.3-1.02)=12(支).   铅笔和圆珠笔共   232-12=220(支).   其中圆珠笔   220(4+1)=44(支).   铅笔   220-44=176(支).   答:其中钢笔12支,圆珠笔44支,铅笔176支。 例12. 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?   解一:如果小明第一次测验24题全对,得524=120(分).那么第二次只做对30-24=6(题)得分是   86-2(15-6)=30(分).   两次相差   120-30=90(分).   比题目中条件相差10分,多了80分。说明假设的第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分。两者两差数就可减少   6+10=16(分).   (90-10)(6+10)=5(题).   因此第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).   第一次得分   519-1(24- 19)=90.   第二次得分   811-2(15-11)=80.   答:第一次得90分,第二次得80分。   解二:答对30题,也就是两次共答错   24+15-30=9(题).   第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分).   如果答错9题都是第一次,要从满分中扣去69.但两次满分都是120分。比题目中条件"第一次得分多10分",要少了69+10.因此,第二次答错题数是   (69+10)(6+10)=4(题)   第一次答错9-4=5(题).   第一次得分5(24-5)-15=90(分).   第二次得分8(15-4)-24=80(分).   答:第一次得90分,第二次得80分。
展开阅读全文
提示  淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小学数学归一问答应用题.doc
链接地址:https://www.taowenge.com/p-2603874.html
关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

收起
展开