广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (19) .doc
《广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (19) .doc》由会员分享,可在线阅读,更多相关《广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: (19) .doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考数学三轮复习冲刺模拟试题19导数02三、解答题已知函数(为自然对数的底数)(1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围(3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式若不存在,请说明理由已知函数().(1)若,试确定函数的单调区间;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围.(3)若,求的取值范围.已知函数()若为的极值点,求实数的值;()若在上为增函数,求实数的取值范围;()当时,方程有实根,求实数的最大值.已知函数f(x)=2lnx+ax2-1(aR)(1)求函数f(x)的单调区间;(2)若a
2、=1,分别解答下面两题,(i)若不等式f(1+x)+f(1-x)m对任意的0x2.已知函数的最小值为0,其中.(1)求a的值(2)若对任意的,有成立,求实数k的最小值(3)证明已知函数在处取得极值.(1)求实数的值; (2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;(3)证明:对任意的正整数,不等式都成立. (本小题满分14分)设函数,其中b0。(1)当b时,判断函数在定义域上的单调性;(2)求函数的极值点;(3)证明对任意的正整数n,不等式都成立。 (本小题满分14分)设函数(1)当a=1时,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求实数a的取值范围;(3
3、)设函数,若在l,e上至少存在一点使成立,求实数a的取值范围。已知函数f(x)=aln(ex+1)-(a+1)x,g(x)=x2-(a-1)x-f(lnx), aR,且g(x)在x=1处取得极值.(1)求a的值;(2)若对0x3, 不等式g(x)|m-1|成立,求m的取值范围; (3)已知ABC的三个顶点A,B,C都在函数f(x)的图像上,且横坐标依次成等差数列,讨论ABC是否为钝角三角形,是否为等腰三角形.并证明你的结论.已知函数f(x)=(x2+ax-2a2+3a)ex(xR),其中AR. (1)当a=0时,求曲线y=f(x)在点(1,f(1)处的切线的斜率; (2)当a2/3时,求函数f
4、(x)的单调区间与极值. 已知函数f(x)=ax-(2a+1)x+2lnx(a).(1)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2)求f(x)的单调区间;(3)设g(x)=x-2x,若对任意x(0,2,均存在x(0,2,使得f(x)0.(1)求f(x)的单调区间;(2)当x0时,证明不等式:ln(x+1)x;(3)设f(x)的最小值为g(a),证明不等式:-1ag(a)0, 递增区间是,递减区间是 ()() 设, 化简得:, , ,在上恒成立,在上单调递减, 所以,即的取值范围是 (),在上单调递增, 若,则则与已知矛盾, 若,则则与已知矛盾, 若,则,又,得与矛盾,
5、不妨设,则由()知当时, 令,则, 又在上单调递增,即 证2; , 设,则t0, 令,得,在(0,1)单调递减,在单调递增, ,又因为时,不成立. , 解:(1)的定义域为 ,由,得, 当x变化时,的变化情况如下表:x-0+极小值因此,在处取得最小值,故由题意,所以. ()解:当时,取,有,故不合题意. 当时,令,即. ,令,得 -1. (1)当时,在上恒成立,因此在上单调递减,从而对于任意的,总有,即在上恒成立. 故符合题意. (2)当时,对于,故在内单调递增,因此当取时,即不成立. 故不合题意, 综上,k的最小值为. ()证明:当n=1时,不等式左边=右边,所以不等式成立. 当时, . 在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题: 19 广东省 中山市 普通高中 2018 高考 数学 三轮 复习 冲刺 模拟 试题 19
限制150内