2019版高考数学(理)高分计划一轮高分讲义:第10章 计数原理、概率、随机变量及其分布 10.7 离散型随机变量及其分布列 .docx
《2019版高考数学(理)高分计划一轮高分讲义:第10章 计数原理、概率、随机变量及其分布 10.7 离散型随机变量及其分布列 .docx》由会员分享,可在线阅读,更多相关《2019版高考数学(理)高分计划一轮高分讲义:第10章 计数原理、概率、随机变量及其分布 10.7 离散型随机变量及其分布列 .docx(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、10.7离散型随机变量及其分布列知识梳理1离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X,Y,表示所有取值可以一一列出的随机变量,称为离散型随机变量2离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,xi,xn,X取每一个值xi(i1,2,n)的概率P(Xxi)pi,则表Xx1x2xixnPp1p2pipn称为离散型随机变量X的概率分布列,简称为X的分布列,有时为了表达简单,也用等式P(Xxi)pi,i1,2,n表示X的分布列(2)离散型随机变量的分布列的性质pi0(i1,2,n);.3常见离散型随机变量的分布列(1)两点分布若随机变量
2、X服从两点分布,即其分布列为X01P1pp,其中pP(X1)称为成功概率(2)超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(Xk),k0,1,2,m,其中mminM,n,且nN,MN,n,M,NN*.X01mP如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布诊断自测1概念思辨(1)随机试验的结果与随机变量是一种映射关系,即每一个试验结果都有唯一的随机变量的值与之对应. ()(2)离散型随机变量的各个可能值表示的事件是彼此互斥的()(3)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和()(4)若随机变量X的分布列由下表给出,X2
3、5P0.30.7则它服从两点分布()答案(1)(2)(3)(4)2教材衍化(1)(选修A23P49A组T5)设离散型随机变量的分布列如下:1234P则P_.答案解析PP(1)P(2).(2)(选修A23P49T3)从一副52张(去掉两张王)的扑克牌中任取5张,其中黑桃张数的概率分布公式是_,黑桃不多于1张的概率是_答案P(k)(k0,1,2,3,4,5)0.633解析P(k)(k0,1,2,3,4,5);P(1)P(0)P(1)0.2220.4110.633.3小题热身(1)袋中有除标号不同外其余均相同的5个钢球,分别标有1,2,3,4,5五个号码在有放回地抽取条件下依次取出2个球,设两个球号
4、码之和为随机变量,则所有可能值的个数是()A25 B10 C9 D5答案C解析第一次可取号码为1,2,3,4,5中的任意一个,由于是有放回地抽取,第二次也可取号码为1,2,3,4,5中的任何一个,两个球的号码之和可能为2,3,4,5,6,7,8,9,10.故选C.(2)(2018安康质检)设随机变量X的概率分布列为X1234Pm则P(|X3|1)_.答案解析由m1,解得m,P(|X3|1)P(X2)P(X4).题型1离散型随机变量分布列的性质设随机变量的分布列Pak(k1,2,3,4,5)(1)求常数a的值;(2)求P;(3)求P.解由已知分布列为:Pa2a3a4a5a(1)由a2a3a4a5
5、a1,得a.(2)PPPP(1),或P1P1.(3)因为只有,满足,故PPPP.条件探究1若将典例条件“Pak,k1,2,3,4,5”变为“P(i)ai,i1,2,3”,求a的值解P(i)ai(i1,2,3)aaa1,得a.条件探究2若将典例条件变为“P(n)(n1,2,3,4)”求P的值解P(n).1,a.PP(1)P(2).方法技巧1分布列性质的两个作用(1)利用分布列中各事件概率之和为1可求参数的值及检查分布列的正确性(2)随机变量X所取的值分别对应的事件是两两互斥的,利用这一点可以求随机变量在某个范围内的概率提醒:求分布列中的参数值时,要保证每个概率值均为非负数2随机变量X的线性组合的
6、概率及分布列问题(1)随机变量X的线性组合aXb(a,bR)是随机变量(2)求aXb的分布列可先求出相应随机变量的值,再根据对应的概率写出分布列冲关针对训练1随机变量X的分布列如下:X101Pabc其中a,b,c成等差数列,则P(|X|1)_.答案解析a、b、c成等差数列,2bac,又abc1,b,P(|X|1)ac.2设离散型随机变量X的分布列为X01234P0.20.10.10.3m求:(1)2X1的分布列;(2)|X1|的分布列解由分布列的性质知:020.10.10.3m1,m0.3.首先列表为X012342X113579|X1|10123从而由上表得两个分布列为(1)2X1的分布列2X
7、113579P0.20.10.10.30.3(2)|X1|的分布列|X1|0123P0.10.30.30.3题型2超几何分布(2017山东高考)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;(2)用X表示接受乙种心理暗示
8、的女志愿者人数,求X的分布列与数学期望E(X)解(1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M).(2)由题意知X可取的值为0,1,2,3,4,则P(X0),P(X1),P(X2),P(X3),P(X4).因此X的分布列为X01234PX的数学期望是E(X)0P(X0)1P(X1)2P(X2)3P(X3)4P(X4)012342.方法技巧1超几何分布的两个特点(1)超几何分布是不放回抽样问题(2)随机变量为抽到的某类个体的个数2超几何分布的应用条件及实质(1)条件:考察对象分两类;已知各类对象的个数;从中抽取若干个个体,考察某类个体个数的概率分布(2)实质:超几何分
9、布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型冲关针对训练(2015重庆高考)端午节吃粽子是我国的传统习俗设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望解(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A).(2)X的所有可能值为0,1,2,且P(X0),P(X1),P(X2).综上知,X的分布列为X012P故E(X)012(个).题型3求离散型随机变量的分布列角度1与互斥事件有关的分布列问题(2015安徽高
10、考)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)解(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A).(2)X的可能取值为200,300,400.P(X200),P(X300),P(X400)1P(X200)P(X300)1.故X的分布列为X200300400PE(X)20
11、0300400350(元)角度2与独立事件(或独立重复试验)有关的分布列问题(2017天津高考)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,.(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率解(1)随机变量X的所有可能取值为0,1,2,3.P(X0),P(X1),P(X2),P(X3).所以随机变量X的分布列为X0123P随机变量X的数学期望E(X)0123.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版高考数学理高分计划一轮高分讲义:第10章计数原理、概率、随机变量及其分布 10.7离散型随机变量及其分布列 2019 高考 数学 高分 计划 一轮 讲义 10 计数 原理 概率 随机变量
链接地址:https://www.taowenge.com/p-2610007.html
限制150内