2019版高考数学(理)一轮总复习作业:54空间向量的应用(一) 平行与垂直 .doc
《2019版高考数学(理)一轮总复习作业:54空间向量的应用(一) 平行与垂直 .doc》由会员分享,可在线阅读,更多相关《2019版高考数学(理)一轮总复习作业:54空间向量的应用(一) 平行与垂直 .doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、题组层级快练(五十四)1已知点O,A,B,C为空间不共面的四点,且向量a,向量b,则与a,b不能构成空间基底的向量是()A.B.C. D.或答案C解析根据题意得(ab),a,b共面2有4个命题:若pxayb,则p与a,b共面;若p与a,b共面,则pxayb;若xy,则P,M,A,B共面;若P,M,A,B共面,则xy.其中真命题的个数是()A1 B2C3 D4答案B解析正确,中若a,b共线,p与a不共线,则pxayb就不成立正确中若M,A,B共线,点P不在此直线上,则xy不正确3从点A(2,1,7)沿向量a(8,9,12)的方向取线段长|AB|34,则B点坐标为()A(18,17,17) B(1
2、4,19,17)C(6,1) D(2,13)答案A解析设B点坐标为(x,y,z),则a(0),即(x2,y1,z7)(8,9,12)由|34,即34,得2.x18,y17,z17.4(2018吉林一中模拟)如图,空间四边形ABCD中,若向量(3,5,2),(7,1,4),点E,F分别为线段BC,AD的中点,则的坐标为()A(2,3,3)B(2,3,3)C(5,2,1)D(5,2,1)答案B解析取AC中点M,连接ME,MF,(,1),(,2),而(2,3,3),故选B.5(2017上海奉贤二模)已知长方体ABCDA1B1C1D1,下列向量的数量积一定不为0的是()A. B.C. D.答案D解析当
3、侧面BCC1B1是正方形时可得0,所以排除A.当底面ABCD是正方形时AC垂直于对角面BD1,所以排除B,显然也排除C.由题图可得BD1与BC所成的角小于90.故选D.6已知两个非零向量a(a1,a2,a3),b(b1,b2,b3),它们平行的充要条件是()A.Ba1b1a2b2a3b3Ca1b1a2b2a3b30D存在非零实数k,使akb答案D解析应选D,首先排除B,C项表示ab,A项表示与a,b分别平行的单位向量,但两向量方向相反也叫平行7正方体ABCDA1B1C1D1的棱长为a,点M在AC1上,且,N为B1B的中点,则|为()A.a B.aC.a D.a答案A解析以D为原点建立如图所示的
4、空间直角坐标系Dxyz,则A(a,0,0),C1(0,a,a),N(a,a,),设M(x,y,z)点M在AC1上且,(xa,y,z)(x,ay,az)xa,y,z.|a.8.(2018湖南师大附中一模)如图,已知正三棱柱ABCA1B1C1的各条棱长都相等,则异面直线AB1和A1C所成角的余弦值为()A. BC. D答案A解析如图所示,以A为坐标原点,在平面ABC内过点A作AC的垂线,以此为x轴,以AC所在直线为y轴,以AA1所在直线为z轴,建立空间直角坐标系设正三棱柱ABCA1B1C1的各条棱长为2,则A(0,0,0),B1(,1,2),A1(0,0,2),C(0,2,0),(,1,2),(0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版高考数学理一轮总复习作业:54空间向量的应用一 平行与垂直 2019 高考 数学 一轮 复习 作业 54 空间 向量 应用 平行 垂直
限制150内