(江苏专版)2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.3 抛物线讲义.doc
《(江苏专版)2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.3 抛物线讲义.doc》由会员分享,可在线阅读,更多相关《(江苏专版)2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.3 抛物线讲义.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、15.3抛物线考纲解读考点内容解读要求五年高考统计常考题型预测热度201320142015201620171.抛物线的定义和标准方程1.抛物线定义的应用2.求抛物线的标准方程A填空题解答题2.抛物线的性质抛物线的几何性质及简单运用A填空题解答题分析解读抛物线在近年高考中没有单独考查,是命题冷点.若高考出题考查,试题难度也会比较低,会重点考查对定义的理解及几何性质的简单运用.五年高考考点一抛物线的定义和标准方程1.(2016四川改编,3,5分)抛物线y2=4x的焦点坐标是.答案(1,0)2.(2015陕西,14,5分)若抛物线y2=2px(p0)的准线经过双曲线x2-y2=1的一个焦点,则p=.
2、答案223.(2014湖南,15,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a0)经过C,F两点,则ba=.答案1+2教师用书专用(4)4.(2013广东理,20,14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的距离为322.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|BF|的最小值.解析(1)依题意,设抛物线C的方程为x2=4cy,由题意易知|0-c-2|2=322且c0,解得
3、c=1.所以抛物线C的方程为x2=4y.(2)抛物线C的方程为x2=4y,即y=14x2,求导得y=12x.设A(x1,y1),B(x2,y2)其中y1=x124,y2=x224,则切线PA,PB的斜率分别为12x1,12x2,所以切线PA的方程为y-y1=x12(x-x1),即y=x12x-x122+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以(x1,y1),(x2,y2)为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y
4、-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1,联立方程x0x-2y-2y0=0,x2=4y,消去x整理得y2+(2y0-x02)y+y02=0.由一元二次方程根与系数的关系可得y1+y2=x02-2y0,y1y2=y02,所以|AF|BF|=y1y2+(y1+y2)+1=y02+x02-2y0+1.又点P(x0,y0)在直线l上,所以x0=y0+2,所以y02+x02-2y0+1=2y02+2y0+5=2y0+122+92.所以当y0=-12时,|AF|BF|取得最小值,且最小值为92.考
5、点二抛物线的性质1.(2017课标全国文改编,12,5分)过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到直线NF的距离为.答案232.(2017课标全国理,16,5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.答案63.(2016浙江理,9,4分)若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是.答案94.(2014课标改编,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为
6、.答案945.(2013江西理,14,5分)抛物线x2=2py(p0)的焦点为F,其准线与双曲线x23-y23=1相交于A,B两点,若ABF为等边三角形,则p=.答案66.(2017北京理,18,14分)已知抛物线C:y2=2px过点P(1,1).过点0,12作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.解析本题考查抛物线方程及性质,直线与抛物线的位置关系.(1)由抛物线C:y2=2px过点P(1,1),得p=12.所以抛物线C的方程为y2=x.抛物线C
7、的焦点坐标为14,0,准线方程为x=-14.(2)由题意,设直线l的方程为y=kx+12(k0),l与抛物线C的交点为M(x1,y1),N(x2,y2).由y=kx+12,y2=x得4k2x2+(4k-4)x+1=0.则x1+x2=1-kk2,x1x2=14k2.因为点P的坐标为(1,1),所以直线OP的方程为y=x,点A的坐标为(x1,x1).直线ON的方程为y=y2x2x,点B的坐标为x1,y2x1x2.因为y1+y2x1x2-2x1=y1x2+y2x1-2x1x2x2=kx1+12x2+kx2+12x1-2x1x2x2=(2k-2)x1x2+12(x2+x1)x2=(2k-2)14k2+
8、1-k2k2x2=0,所以y1+y2x1x2=2x1.故A为线段BM的中点.7.(2016课标全国,20,12分)在直角坐标系xOy中,直线l:y=t(t0)交y轴于点M,交抛物线C:y2=2px(p0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(1)求|OH|ON|;(2)除H以外,直线MH与C是否有其他公共点?说明理由.解析(1)由已知得M(0,t),Pt22p,t.(1分)又N为M关于点P的对称点,故Nt2p,t,ON的方程为y=ptx,代入y2=2px整理得px2-2t2x=0,解得x1=0,x2=2t2p.因此H2t2p,2t.(4分)所以N为OH的中点,即|OH|O
9、N|=2.(6分)(2)直线MH与C除H以外没有其他公共点.(7分)理由如下:直线MH的方程为y-t=p2tx,即x=2tp(y-t).(9分)代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.(12分)三年模拟A组20162018年模拟基础题组考点一抛物线的定义和标准方程1.(2017江苏泰州姜堰模拟,7)抛物线y2=4x上任一点到定直线l:x=-1的距离与它到定点F的距离相等,则点F的坐标为.答案(1,0)2.(苏教选21,二,4,10,变式)已知抛物线y2=2px(p0),过其焦点且斜率为1的直线交抛物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏专版2019版高考数学一轮复习讲义: 第十五章 圆锥曲线与方程 15.3 抛物线讲义 江苏 专版 2019 高考 数学 一轮 复习 讲义 第十五 圆锥曲线 方程 抛物线
链接地址:https://www.taowenge.com/p-2610776.html
限制150内