2019高三数学理北师大版一轮教师用书:第7章 第7节 第2课时 利用空间向量求空间角 .doc
《2019高三数学理北师大版一轮教师用书:第7章 第7节 第2课时 利用空间向量求空间角 .doc》由会员分享,可在线阅读,更多相关《2019高三数学理北师大版一轮教师用书:第7章 第7节 第2课时 利用空间向量求空间角 .doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2课时利用空间向量求空间角(对应学生用书第125页)求异面直线的夹角如图7715,四面体ABCD中,O是BD的中点,CACBCDBD2,ABAD.图7715(1)求证:AO平面BCD;(2)求异面直线AB与CD夹角的余弦值解(1)证明:连接OC,由CACBCDBD2,ABAD,O是BD的中点,知CO,AO1,AOBD.在AOC中,AC2AO2OC2,则AOOC又BDOCO,因此AO平面BCD.(2)如图建立空间直角坐标系Oxyz,则A(0,0,1),B(1,0,0),C(0,0),D(1,0,0),(1,0,1),(1,0),所以|cos,|.即异面直线AB与CD夹角的余弦值为.规律方法利用
2、向量法求异面直线夹角的步骤(1)选好基底或建立空间直角坐标系.(2)求出两直线的方向向量v1,v2.(3)代入公式|cosv1,v2|求解.易错警示:两异面直线夹角的范围是,两向量的夹角的范围是0,当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.跟踪训练(2017湖南五市十校3月联考)有公共边的等边三角形ABC和BCD所在平面互相垂直,则异面直线AB和CD夹角的余弦值为_. 【导学号:79140254】设等边三角形的边长为2.取BC的中点O,连接OA、OD,等边三角形ABC和BCD所在平面互相垂直,OA,OC,OD两
3、两垂直,以O为坐标原点,建立如图所示的空间直角坐标系则A(0,0,),B(0,1,0),C(0,1,0),D(,0,0),(0,1,),(,1,0),cos,异面直线AB和CD夹角的余弦值为.求直线与平面的夹角(2017浙江高考)如图7716,已知四棱锥PABCD,PAD是以AD为斜边的等腰直角三角形,BCAD,CDAD,PCAD2DC2CB,E为PD的中点图7716(1)证明:CE平面PAB;(2)求直线CE与平面PBC夹角的正弦值解(1)证明:如图,设PA的中点为F,连接EF,FB.因为E,F分别为PD,PA的中点,所以EFAD且EFAD.又因为BCAD,BCAD,所以EFBC且EFBC,
4、所以四边形BCEF为平行四边形,所以CEBF.因为BF平面PAB,CE平面PAB,所以CE平面PAB.(2)分别取BC,AD的中点M,N.连接PN交EF于点Q,连接MQ.因为E,F,N分别是PD,PA,AD的中点,所以Q为EF的中点在平行四边形BCEF中,MQCE.由PAD为等腰直角三角形得PNAD.由DCAD,BCAD,BCAD,N是AD的中点得BNAD.所以AD平面PBN.由BCAD得BC平面PBN,那么平面PBC平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以QMH是直线CE与平面PBC的夹角设CD1.在PCD中,由PC2,CD1,PD得CE,在P
5、BN中,由PNBN1,PB得QH,在RtMQH中,QH,MQ,所以sinQMH.所以,直线CE与平面PBC夹角的正弦值是.规律方法(1)线面角范围,向量夹角范围为0,.(2)线面角的正弦值等于斜线对应向量与平面法向量夹角余弦值的绝对值.即sin .即斜向量,n为平面法向量.跟踪训练(2018广州综合测试(二)如图7717 ,四边形ABCD是边长为a的菱形,BAD60,EB平面ABCD,FD平面ABCD,EB2FDa.图7717(1)求证:EFAC;(2)求直线CE与平面ABF夹角的正弦值解(1)证明:连接BD,因为四边形ABCD是菱形,所以ACBD.因为FD平面ABCD,AC平面ABCD,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019高三数学理北师大版一轮教师用书:第7章 第7节第2课时利用空间向量求空间角 2019 高三数 学理 北师大 一轮 教师 课时 利用 空间 向量
限制150内