2019年高考数学一轮复习学案+训练+课件:专题探究课1函数与导数中的高考热点问题理北.doc





《2019年高考数学一轮复习学案+训练+课件:专题探究课1函数与导数中的高考热点问题理北.doc》由会员分享,可在线阅读,更多相关《2019年高考数学一轮复习学案+训练+课件:专题探究课1函数与导数中的高考热点问题理北.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一)函数与导数中的高考热点问题(对应学生用书第44页)命题解读函数是中学数学的核心内容,导数是研究函数的重要工具,因此,函数与导数是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有利用导数研究函数的性质函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;
2、(3)利用函数的单调性、极值、最值,求参数的范围(2015全国卷)已知函数f(x)ln xa(1x)(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围解(1)f(x)的定义域为(0,),f(x)a.若a0,则f(x)0,所以f(x)在(0,)上单调递增若a0,则当x时,f(x)0;当x时,f(x)0时,f(x)在x取得最大值,最大值为flnaln aa1.因此f2a2等价于ln aa10.令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)1时,g(a)0.因此,a的取值范围是(0,1)规律方法1.研究函数的性质
3、,必须在定义域内进行,因此利用导数研究函数的性质,应遵循定义域优先的原则.2.讨论函数的单调性,求函数的单调区间、极值问题,最终归结到判断f(x)的符号问题上,而f(x)0或f(x)0,最终可转化为一个一元一次不等式或一元二次不等式问题.3.若已知f(x)的单调性,则转化为不等式f(x)0或f(x)0在单调区间上恒成立问题求解.跟踪训练(2018福州质检)已知函数f(x)aln xx2ax(aR). 【导学号:79140096】(1)若x3是f(x)的极值点,求f(x)的单调区间;(2)求g(x)f(x)2x在区间1,e的最小值h(a)解(1)f(x)的定义域为(0,),f(x)2xa,因为x
4、3是f(x)的极值点,所以f(3)0,解得a9.所以f(x),所以当0x或x3时,f(x)0;当x3时,f(x)0.所以f(x)的单调递增区间为和(3,),单调递减区间为.(2)由题知,g(x)f(x)2xaln xx2ax2x.g(x)2.当1,即a2时,g(x)在1,e上为增函数,h(a)g(1)a1;当1e,即2a2e时,g(x)在上为减函数,在上为增函数,h(a)galna2a;当e,即a2e时,g(x)在1,e上为减函数,h(a)g(e)(1e)ae22e.综上,h(a)利用导数研究函数的零点问题研究函数零点的本质就是研究函数的极值的正负,为此,我们可以通过讨论函数的单调性来解决,求
5、解时应注重等价转化与数形结合思想的应用,其主要考查方式有:(1)确定函数的零点、图像交点的个数;(2)由函数的零点、图像交点的情况求参数的取值范围(2017全国卷)已知函数f(x)ae2x(a2)exx.(1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 解(1)f(x)的定义域为(,),f(x)2ae2x(a2)ex1(aex1)(2ex1)()若a0,则f(x)0,则由f(x)0得xln a.当x(,ln a)时,f(x)0.所以f(x)在(,ln a)单调递减,在(ln a,)单调递增(2)()若a0,由(1)知,f(x)至多有一个零点()若a0,由(1)知,当x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 一轮 复习 训练 课件 专题 探究 函数 导数 中的 高考 热点问题

限制150内