2019年高考数学一轮复习学案+训练+课件:专题探究课5平面解析几何中的高考热点问题理北.doc
《2019年高考数学一轮复习学案+训练+课件:专题探究课5平面解析几何中的高考热点问题理北.doc》由会员分享,可在线阅读,更多相关《2019年高考数学一轮复习学案+训练+课件:专题探究课5平面解析几何中的高考热点问题理北.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、五)平面解析几何中的高考热点问题(对应学生用书第153页)命题解读圆锥曲线是平面解析几何的核心内容,每年高考必考一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对运算能力,分析问题解决问题的能力要求较高,难度较大,常以压轴题的形式出现圆锥曲线的标准方程与性质圆锥曲线的标准方程在高考中占有十分重要的地位一般地,求圆锥曲线的标准方程是作为解答题中考查“直线与圆锥曲线”的第一小题,最常用的方法是定义法与待定系数法离心率是高考对圆锥曲线考查的又一重点,涉及a,b,c三者之
2、间的关系另外抛物线的准线,双曲线的渐近线也是命题的热点(2017石家庄质检)如图1,椭圆1(ab0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQPF1. 【导学号:79140313】图1(1)若|PF1|2,|PF2|2,求椭圆的标准方程;(2)若|PF1|PQ|,求椭圆的离心率e.解(1)由椭圆的定义,2a|PF1|PF2|(2)(2)4,故a2.设椭圆的半焦距为c,由已知PF1PF2,因此2c|F1F2|2.即c,从而b1,故所求椭圆的标准方程为y21.(2)连接F1Q,如图,由椭圆的定义知|PF1|PF2|2a,|QF1|QF2|2a,又|PF1|PQ|PF2|Q
3、F2|(2a|PF1|)(2a|QF1|),可得|QF1|4a2|PF1|.又因为PF1PQ且|PF1|PQ|,所以|QF1|PF1|.由可得|PF1|(42)a,从而|PF2|2a|PF1|(22)a.由PF1PF2知|PF1|2|PF2|2|F1F2|2,即(42)2a2(22)2a24c2,可得(96)a2c2,即96,因此e.规律方法1.用定义法求圆锥曲线的方程是常用的方法,同时应注意数形结合思想的应用.2.圆锥曲线的离心率刻画曲线的扁平程度,只要明确a,b,c中任意两量的等量关系都可求出离心率,但一定注意不同曲线离心率取值范围的限制.跟踪训练(2017河南3月适应性测试)设抛物线的顶
4、点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.(1)求抛物线的标准方程;(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点连接QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程解(1)设抛物线的方程是x22py(p0),A(x1,y1),B(x2,y2),由抛物线定义可知y1y2p8,又AB的中点到x轴的距离为3,y1y26,p2,抛物线的标准方程是x24y.(2)由题意知,直线m的斜率存在,设直线m:ykx6(k0),P(x3,y3),Q(x4,y4),由消去y得x24kx240,(*)易知
5、抛物线在点P处的切线方程为y(xx3),令y1,得x,R,又Q,F,R三点共线,kQFkFR,又F(0,1),即(x4)(x4)16x3x40,整理得(x3x4)24(x3x4)22x3x41616x3x40,将(*)式代入上式得k2,k,直线m的方程为yx6.圆锥曲线中的定点、定值问题(答题模板)定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题(本小题满分12分)(2017全国卷)已知椭圆C:1(ab0),四点P1(1,1),P2(0,1),中.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2
6、A与直线P2B的斜率的和为1,证明:l过定点审题指导题眼挖掘关键信息根据椭圆的对称性,以及所给四点中P3、P4关于y轴对称,可知P3、P4在椭圆上,进而判断P2在椭圆上,求出其方程欲证直线l过定点,只需求出l的方程,分析l与x轴的位置关系,结合直线P2A与直线P2B斜率的和为1,联立l与椭圆的方程求解,并注意“设而不求,整体代入”方法的运用规范解答(1)由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点又由知,椭圆C不经过点P1,所以点P2在椭圆C上.2分因此解得故椭圆C的方程为y21.4分(2)证明:设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:xt
7、,由题设知t0,且|t|2,可得A,B的坐标分别为,则k1k21,得t2,不符合题设.6分从而可设l:ykxm(m1)将ykxm代入y21得(4k21)x28kmx4m240.由题设可知16(4k2m21)0.设A(x1,y1),B(x2,y2),则x1x2,x1x2.8分而k1k2.由题设k1k21,故(2k1)x1x2(m1)(x1x2)0.10分即(2k1)(m1)0,解得k.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1).12分阅卷者说易错点防范措施不会判断四点中哪三点在椭圆上可画出四点,数形给合进行判断忽视直线l斜率不存在的情况应树立分类讨论的意识,求直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 一轮 复习 训练 课件 专题 探究 平面 解析几何 中的 高考 热点问题
限制150内