专题04 数列与不等式文-2018年高考题和高考模拟题数学(文)分项版汇编 .doc
《专题04 数列与不等式文-2018年高考题和高考模拟题数学(文)分项版汇编 .doc》由会员分享,可在线阅读,更多相关《专题04 数列与不等式文-2018年高考题和高考模拟题数学(文)分项版汇编 .doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、4数列与不等式1【2018年浙江卷】已知成等比数列,且若,则A. B. C. D. 【答案】B点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如2【2018年文北京卷】“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B. C. D. 【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一
2、个单音与前一个单音频率比为,所以,又,则,故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.3【2018年浙江卷】已知集合,将的所有元素从小到大依次排列构成一个数列记为数列的前n项和,则使得成立的n的最小值为_【答案】27,所以只需研究是否有满足条件的解,此时 ,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),
3、符号型(如),周期型(如).4【2018年浙江卷】已知等比数列an的公比q1,且a3+a4+a5=28,a4+2是a3,a5的等差中项数列bn满足b1=1,数列(bn+1bn)an的前n项和为2n2+n()求q的值;()求数列bn的通项公式 【答案】()()()设,数列前n项和为.由解得.由()可知,所以,故, .设,所以,因此,又,所以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不
4、等于1两种情况求解.5【2018年天津卷文】设an是等差数列,其前n项和为Sn(nN*);bn是等比数列,公比大于0,其前n项和为Tn(nN*)已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6()求Sn和Tn;()若Sn+(T1+T2+Tn)=an+4bn,求正整数n的值【答案】(),;()4.详解:(I)设等比数列的公比为q,由b1=1,b3=b2+2,可得因为,可得,故所以,设等差数列的公差为由,可得由,可得从而,故,所以,(II)由(I),有由可得,整理得解得(舍),或所以n的值为4点睛:本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的
5、基本方法和运算求解能力.6【2018年文北京卷】设是等差数列,且.()求的通项公式;()求.【答案】(I) (II)【解析】分析:(1)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(2)由(1)可得,进而可利用等比数列求和公式进行求解.详解:(I)设等差数列的公差为,又,.(II)由(I)知,是以2为首项,2为公比的等比数列. 点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.7【2018年江苏卷】设,对1,2,n的一个排列,如果当s0时,所以单调递减,从而f(0)=1当时,因此,当时,数列单调递减,故数列的最小值为因此,
6、d的取值范围为点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.9【2018年新课标I卷文】已知数列满足,设(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式【答案】(1) b1=1,b2=2,b3=4(2) bn是首项为1,公比为2的等比数列理由见解析.(3) an=n2n-1【解析】分析: (1)根据题中条件所给的数列的递推公式,将其化为
7、an+1=,分别令n=1和n=2,代入上式求得a2=4和a3=12,再利用,从而求得b1=1,b2=2,b3=4(2)bn是首项为1,公比为2的等比数列由条件可得,即bn+1=2bn,又b1=1,所以bn是首项为1,公比为2的等比数列(3)由(2)可得,所以an=n2n-1点睛:该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列的通项公式,借助于的通项公式求得数列的通项公式,从而求得最后的结果.10【2018年全国卷文】等比数列中,(1)求
8、的通项公式;(2)记为的前项和若,求【答案】(1)或 (2)【解析】分析:(1)列出方程,解出q可得;(2)求出前n项和,解方程可得m。详解:(1)设的公比为,由题设得由已知得,解得(舍去),或故或(2)若,则由得,此方程没有正整数解若,则由得,解得综上,点睛:本题主要考查等比数列的通项公式和前n项和公式,属于基础题。11【2018年天津卷文】设变量x,y满足约束条件 则目标函数的最大值为A. 6 B. 19 C. 21 D. 45【答案】C.本题选择C选项.点睛:求线性目标函数zaxby(ab0)的最值,当b0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b0
9、时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.12【2018年文北京卷】设集合则A. 对任意实数a, B. 对任意实数a,(2,1)C. 当且仅当a0时,(2,1) D. 当且仅当 时,(2,1)【答案】D点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.13【2018年浙江卷】若满足约束条件则的最小值是_,最大值是_【答案】 -2 8【解析】分析:先作可行域,再平移目标函数对应的直线,从
10、而确定最值.详解:作可行域,如图中阴影部分所示,则直线过点A(2,2)时取最大值8,过点B(4,-2)时取最小值-2. 点睛:线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得.14【2018年天津卷文】已知,且,则的最小值为_.【答案】点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正各项均为正;二定积或和为定值;三相等等号能否取得”,若忽略了某个条件,就会出现错误15【2018年
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题04 数列与不等式文-2018年高考题和高考模拟题数学文分项版汇编 专题 04 数列 不等式 2018 年高 考题 高考 模拟 数学 分项版 汇编
限制150内