椭圆学习知识重点情况总结及其经典编辑习题集.doc
-!圆锥曲线与方程-椭圆 知识点一椭圆及其标准方程1椭圆的定义:平面内与两定点F1,F2距离的和等于常数的点的轨迹叫做椭圆,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|=2c;这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。(时为线段,无轨迹)。2标准方程: 焦点在x轴上:(ab0); 焦点F(c,0)焦点在y轴上:(ab0); 焦点F(0, c) 注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示: 或者 mx2+ny2=1 二椭圆的简单几何性质: 1.范围 (1)椭圆(ab0) 横坐标-axa ,纵坐标-bxb (2)椭圆(ab0) 横坐标-bxb,纵坐标-axa 2.对称性 椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点 (1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b) (2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。 4离心率 (1)我们把椭圆的焦距与长轴长的比,即称为椭圆的离心率,记作e(), 是圆; e越接近于0 (e越小),椭圆就越接近于圆;e越接近于1 (e越大),椭圆越扁; 注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。小结一:基本元素(1)基本量:a、b、c、e、(共四个量), 特征三角形(2)基本点:顶点、焦点、中心(共七个点)(3)基本线:对称轴(共两条线)5椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.6.几何性质 (1)点P在椭圆上, 最大角 (2)最大距离,最小距离7. 直线与椭圆的位置关系(1) 位置关系的判定:联立方程组求根的判别式;(2) 弦长公式: (3) 中点弦问题:韦达定理法、点差法例题讲解:一.椭圆定义:方程化简的结果是 2若的两个顶点,的周长为,则顶点的轨迹方程是 3.已知椭圆=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 二利用标准方程确定参数1.若方程+=1(1)表示圆,则实数k的取值是 .(2)表示焦点在x轴上的椭圆,则实数k的取值范围是 .(3)表示焦点在y型上的椭圆,则实数k的取值范围是 .(4)表示椭圆,则实数k的取值范围是 .2.椭圆的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3椭圆的焦距为,则= 。4椭圆的一个焦点是,那么 。三待定系数法求椭圆标准方程1若椭圆经过点,则该椭圆的标准方程为 。2焦点在坐标轴上,且,的椭圆的标准方程为 3焦点在轴上,椭圆的标准方程为4. 已知三点P(5,2)、(6,0)、(6,0),求以、为焦点且过点P的椭圆的标准方程;变式:求与椭圆共焦点,且过点的椭圆方程。四焦点三角形1椭圆的焦点为、,是椭圆过焦点的弦,则的周长是 。2设,为椭圆的焦点,为椭圆上的任一点,则的周长是多少?的面积的最大值是多少?3设点是椭圆上的一点,是焦点,若是直角,则的面积为 。变式:已知椭圆,焦点为、,是椭圆上一点若,求的面积五离心率的有关问题1.椭圆的离心率为,则 2.从椭圆短轴的一个端点看长轴两端点的视角为,则此椭圆的离心率为 3椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为 4.设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,求椭圆的离心率。5.在中,若以为焦点的椭圆经过点,则该椭圆的离心率 六、最值问题:1、已知椭圆,A(1,0),P为椭圆上任意一点,求|PA|的最大值 最小值 。2.椭圆两焦点为F1、F2,点P在椭圆上,则|PF1|PF2|的最大值为_,七、弦长、中点弦问题 1、已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程2已知椭圆, (1)求过点(1,0)且被椭圆截得的弦长为的弦所在直线的方程 (2)求过点且被平分的弦所在直线的方程;同步测试 1已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )A 圆 B 椭圆 C线段 D 直线 2、椭圆左右焦点为F1、F2,CD为过F1的弦,则CDF1的周长为_ 3已知方程表示椭圆,则k的取值范围是( ) A -1k0 C k0 D k1或k0)有 (A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对11、椭圆与(0kb0)的左、右焦点F1、F2作两条互相垂直的直线l1、l2,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是()A(0,1) B. C. D.2椭圆1的焦点为F1、F2,椭圆上的点P满足F1PF260,则F1PF2的面积是()A. B. C. D.3已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于()4已知点F,A分别是椭圆1(ab0)的左焦点、右顶点,B(0,b)满足0,则椭圆的离心率等于() A. B. C. D.5已知椭圆1的左右焦点分别为F1、F2,过F2且倾角为45的直线l交椭圆于A、B两点,以下结论中:ABF1的周长为8;原点到l的距离为1;|AB|;正确结论的个数为()A3B2 C1D06已知圆(x2)2y236的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A圆 B椭圆 C双曲线 D抛物线7过椭圆C:1(ab0)的一个顶点作圆x2y2b2的两条切线,切点分别为A,B,若AOB90(O为坐标原点),则椭圆C的离心率为_8若椭圆1(ab0)与曲线x2y2a2b2无公共点,则椭圆的离心率e的取值范围是_9已知ABC顶点A(4,0)和C(4,0),顶点B在椭圆1上,则_.10已知椭圆C:1(ab0)的长轴长为4.(1)若以原点为圆心、椭圆短半轴为半径的圆与直线yx2相切,求椭圆C的焦点坐标;.11椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e. (1)求椭圆E的方程;
收藏
编号:2612073
类型:共享资源
大小:305.20KB
格式:DOC
上传时间:2020-04-24
8
金币
- 关 键 词:
-
椭圆
学习
知识
重点
情况
总结
及其
经典
编辑
编纂
习题集
- 资源描述:
-
-!
圆锥曲线与方程--椭圆
知识点
一.椭圆及其标准方程
1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数的点的轨迹叫做椭圆,即点集M={P| |PF1|+|PF2|=2a,2a>|F1F2|=2c};
这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。
(时为线段,无轨迹)。
2.标准方程:
①焦点在x轴上:(a>b>0); 焦点F(c,0)
②焦点在y轴上:(a>b>0); 焦点F(0, c)
注意:①在两种标准方程中,总有a>b>0,并且椭圆的焦点总在长轴上;
②两种标准方程可用一般形式表示: 或者 mx2+ny2=1
二.椭圆的简单几何性质:
1.范围
(1)椭圆(a>b>0) 横坐标-a≤x≤a ,纵坐标-b≤x≤b
(2)椭圆(a>b>0) 横坐标-b≤x≤b,纵坐标-a≤x≤a
2.对称性
椭圆关于x轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心
3.顶点
(1)椭圆的顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)
(2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a,短轴长等于2b,a和b分别叫做椭圆的长半轴长和短半轴长。
4.离心率
(1)我们把椭圆的焦距与长轴长的比,即称为椭圆的离心率,
记作e(),
是圆;
e越接近于0 (e越小),椭圆就越接近于圆;
e越接近于1 (e越大),椭圆越扁;
注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
小结一:基本元素
(1)基本量:a、b、c、e、(共四个量), 特征三角形
(2)基本点:顶点、焦点、中心(共七个点)
(3)基本线:对称轴(共两条线)
5.椭圆的的内外部
(1)点在椭圆的内部.
(2)点在椭圆的外部.
6.几何性质
(1)点P在椭圆上, 最大角
(2)最大距离,最小距离
7. 直线与椭圆的位置关系
(1) 位置关系的判定:联立方程组求根的判别式;
(2) 弦长公式:
(3) 中点弦问题:韦达定理法、点差法
例题讲解:
一.椭圆定义:
1.方程化简的结果是
2.若的两个顶点,的周长为,则顶点的轨迹方程是
3.已知椭圆=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为
二.利用标准方程确定参数
1.若方程+=1(1)表示圆,则实数k的取值是 .
(2)表示焦点在x轴上的椭圆,则实数k的取值范围是 .
(3)表示焦点在y型上的椭圆,则实数k的取值范围是 .
(4)表示椭圆,则实数k的取值范围是 .
2.椭圆的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,
3.椭圆的焦距为,则= 。
4.椭圆的一个焦点是,那么 。
三.待定系数法求椭圆标准方程
1.若椭圆经过点,,则该椭圆的标准方程为 。
2.焦点在坐标轴上,且,的椭圆的标准方程为
3.焦点在轴上,,椭圆的标准方程为
4. 已知三点P(5,2)、(-6,0)、(6,0),求以、为焦点且过点P的椭圆的标准方程;
变式:求与椭圆共焦点,且过点的椭圆方程。
四.焦点三角形
1.椭圆的焦点为、,是椭圆过焦点的弦,则的周长是 。
2.设,为椭圆的焦点,为椭圆上的任一点,则的周长是多少?的面积的最大值是多少?
3.设点是椭圆上的一点,是焦点,若是直角,则的面积为 。
变式:已知椭圆,焦点为、,是椭圆上一点. 若,
求的面积.
五.离心率的有关问题
1.椭圆的离心率为,则
2.从椭圆短轴的一个端点看长轴两端点的视角为,则此椭圆的离心率为
3.椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为
4.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,求椭圆的离心率。
5.在中,.若以为焦点的椭圆经过点,则该椭圆的离心率 .
六、最值问题:
1、已知椭圆,A(1,0),P为椭圆上任意一点,求|PA|的最大值 最小值 。
2.椭圆两焦点为F1、F2,点P在椭圆上,则|PF1||PF2|的最大值为_____,
七、弦长、中点弦问题
1、已知椭圆及直线.
(1)当为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,求直线的方程.
2已知椭圆,
(1)求过点(1,0)且被椭圆截得的弦长为的弦所在直线的方程
(2)求过点且被平分的弦所在直线的方程;
同步测试
1已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )
A 圆 B 椭圆 C线段 D 直线
2、椭圆左右焦点为F1、F2,CD为过F1的弦,则CDF1的周长为______
3已知方程表示椭圆,则k的取值范围是( )
A -10 C k≥0 D k>1或k<-1
4、求满足以下条件的椭圆的标准方程
(1)长轴长为10,短轴长为6
(2)长轴是短轴的2倍,且过点(2,1)
(3) 经过点(5,1),(3,2)
5.椭圆的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。
若∠F1PF2=60,则椭圆的离心率为_________
6已知椭圆的方程为,P点是椭圆上的点且,求的面积
7.若椭圆的短轴为AB,它的一个焦点为F1,则满足△ABF1为等边三角形的椭圆的离心率为
8.椭圆上的点P到它的左焦点的距离是12,那么点P到它的右焦点的距离是
9.已知椭圆的两个焦点为、,且,弦AB过点,则△的周长
10、椭圆+=1与椭圆+=l(l>0)有
(A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对
11、椭圆与(0b>0)的左、右焦点F1、F2作两条互相垂直的直线l1、l2,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是( )
A.(0,1) B. C. D.
2.椭圆+=1的焦点为F1、F2,椭圆上的点P满足∠F1PF2=60,则△F1PF2的面积是( )
A. B. C. D.
3.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E的离心率等于( )
4已知点F,A分别是椭圆+=1(a>b>0)的左焦点、右顶点,B(0,b)满足=0,则椭圆的离心率等于( )
A. B. C. D.
5.已知椭圆+=1的左右焦点分别为F1、F2,过F2且倾角为45的直线l交椭圆于A、B两点,以下结论中:①△ABF1的周长为8;②原点到l的距离为1;③|AB|=;正确结论的个数为( )
A.3 B.2 C.1 D.0
6.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是( )
A.圆 B.椭圆 C.双曲线 D.抛物线
7.过椭圆C:+=1(a>b>0)的一个顶点作圆x2+y2=b2的两条切线,切点分别为A,B,若∠AOB=90(O为坐标原点),则椭圆C的离心率为________.
8若椭圆+=1(a>b>0)与曲线x2+y2=a2-b2无公共点,则椭圆的离心率e的取值范围是________.
9.已知△ABC顶点A(-4,0)和C(4,0),顶点B在椭圆+=1上,则=________.
10.已知椭圆C:+=1(a>b>0)的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标;
.
11.椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=. (1)求椭圆E的方程;
展开阅读全文
淘文阁 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。