2018大二轮高考总复习文数文档:自检13 圆锥曲线 .doc
《2018大二轮高考总复习文数文档:自检13 圆锥曲线 .doc》由会员分享,可在线阅读,更多相关《2018大二轮高考总复习文数文档:自检13 圆锥曲线 .doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、自检13:圆锥曲线A组高考真题集中训练椭圆1(2016全国乙卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()ABCD解析:不妨设直线l经过椭圆的一个顶点B(0,b)和一个焦点F(c,0),则直线l的方程为1,即bxcybc0.由题意知2b,解得,即e.故选B答案:B2(2017全国卷)已知椭圆C:1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bxay2ab0相切,则C的离心率为()ABCD解析:由题意知以A1A2为直径的圆的圆心为(0,0),半径为a.又直线bxay2ab0与圆相切,圆心到直线的距离da,解得ab,e.
2、故选A答案:A3(2017全国卷)设A,B是椭圆C:1长轴的两个端点若C上存在点M满足AMB120,则m的取值范围是()A(0,19,)B(0,9,)C(0,14,)D(0,4,)解析:方法一设焦点在x轴上,点M(x,y)过点M作x轴的垂线,交x轴于点N,则N(x,0)故tanAMBtan(AMNBMN).又tanAMBtan 120,且由1可得x23,则.解得|y|.又0|y|,即0,结合0m3解得0m1.对于焦点在y轴上的情况,同理亦可得m9.则m的取值范围是(0,19,)故选A方法二当0m3时,焦点在x轴上,要使C上存在点M满足AMB120,则tan 60,即,解得03时,焦点在y轴上,
3、要使C上存在点M满足AMB120,则tan 60,即,解得m9.故m的取值范围为(0,19,)故选A答案:A双曲线1(2017全国卷)若a1,则双曲线y21的离心率的取值范围是()A(,)B(,2)C(1,)D(1,2)解析:由题意得双曲线的离心率e.e21.a1,01,112,1e0,解得m2n3m2,又由该双曲线两焦点间的距离为4,得m2n3m2n4,即m21,所以1n0,b0),则|BM|AB|2a,MBx18012060,M点的坐标为(2a,a)M点在双曲线上,1,ab,ca,e.故选D答案:D5(2015全国卷)已知M(x0,y0)是双曲线C:y21上的一点,F1,F2是C的两个焦点
4、若0,则y0的取值范围是()ABCD解析:由题意知a,b1,c,F1(,0),F2(,0),1(x0,y0),2(x0,y0)120,(x0)(x0)y0,即x3y0.点M(x0,y0)在双曲线上,y1,即x22y,22y3y0,y00)的一条渐近线方程为yx,则a_.解析:双曲线的标准方程为1(a0),双曲线的渐近线方程为yx.又双曲线的一条渐近线方程为yx,a5.答案;57(2015全国卷)已知F是双曲线C:x21的右焦点,P是C的左支上一点,A(0,6)当APF周长最小时,该三角形的面积为_解析:由双曲线方程x21可知,a1,c3,故F(3,0),F1(3,0)当点P在双曲线左支上运动时
5、,由双曲线定义知|PF|PF1|2,所以|PF|PF1|2,从而APF的周长|AP|PF|AF|AP|PF1|2|AF|.因为|AF|15为定值,所以当(|AP|PF1|)最小时,APF的周长最小,由图象可知,此时点P在线段AF1与双曲线的交点处(如图所示)由题意可知直线AF1的方程为y2x6,由得y26y960,解得y2或y8(舍去),所以SAPFSAF1FSPF1F666212.答案:128(2015全国卷)已知双曲线过点(4,),且渐近线方程为yx,则该双曲线的标准方程为_解析:法一:双曲线的渐近线方程为yx,可设双曲线的方程为x24y2(0)双曲线过点(4,),164()24,双曲线的
6、标准方程为y21.法二:渐近线yx过点(4,2),而0,b0)由已知条件可得解得双曲线的标准方程为y21.答案:y21.抛物线1(2016全国甲卷)设F为抛物线C:y24x的焦点,曲线y(k0)与C交于点P,PFx轴,则k()AB1CD2解析:y24x,F(1,0)又曲线y(k0)与C交于点P,PFx轴,P(1,2)将点P(1,2)的坐标代入y(k0),得k2.故选D答案:D2(2016全国乙卷)以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点已知|AB|4,|DE|2,则C的焦点到准线的距离为()A2B4C6D8解析:设抛物线的方程为y22px(p0),圆的方程为x2y2r
7、2.|AB|4,|DE|2,抛物线的准线方程为x,不妨设A,D.点A,D在圆x2y2r2上,85,p4(负值舍去)C的焦点到准线的距离为4.答案:B3(2015全国卷)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y28x的焦点重合,A,B是C的准线与E的两个交点,则|AB|()A3B6C9D12解析:抛物线y28x的焦点为(2,0),椭圆中c2,又,a4,b2a2c212,从而椭圆的方程为1.抛物线y28x的准线为x2,xAxB2,将xA2代入椭圆方程可得|yA|3,由图象可知|AB|2|yA|6.故选B答案:B4(2014全国卷)已知抛物线C:y28x的焦点为F,准线为l,P
8、是l上一点,Q是直线PF与C的一个交点,若4,则|QF|()ABC3D2解析:过点Q作QQl交l于点Q,因为4,所以|PQ|PF|34,又焦点F到准线l的距离为4,所以|QF|QQ|3.故选C答案:C5(2017全国卷)过抛物线C:y24x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上,且MNl,则M到直线NF的距离为()AB2C2D3解析:抛物线y24x的焦点为F(1,0),准线方程为x1.由直线方程的点斜式可得直线MF的方程为y(x1)联立得方程组解得或点M在x轴的上方,M(3,2)MNl,N(1,2)| NF| 4,|MF|MN| 4.MNF是边长为4的等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018大二轮高考总复习文数文档:自检13 圆锥曲线 2018 二轮 高考 复习 文档 自检 13
限制150内