2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义导学案新人教A版必修4_.doc
《2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义导学案新人教A版必修4_.doc》由会员分享,可在线阅读,更多相关《2018版高中数学第二章平面向量2.2.3向量数乘运算及其几何意义导学案新人教A版必修4_.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2.3向量数乘运算及其几何意义学习目标1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一向量数乘的定义思考1实数与向量相乘结果是实数还是向量?答案向量.思考2向量3a,3a与a从长度和方向上分析具有怎样的关系?答案 3a的长度是a的长度的3倍,它的方向与向量a的方向相同.3a的长度是a的长度的3倍,它的方向与向量a的方向相反.思考3a的几何意义是什么?答案a的几何意义就是将表示向量a的有向线段伸长或压缩.当|1时,表示a的有向线段
2、在原方向(0)或反方向(0)上伸长为原来的|倍.梳理向量数乘运算实数与向量a的积是一个向量,这种运算叫做向量的数乘,记作a,其长度与方向规定如下:(1)|a|a|.(2)a (a0)的方向特别地,当0或a0时,0a0或00.知识点二向量数乘的运算律思考类比实数的运算律,向量数乘有怎样的运算律?答案 结合律,分配律.梳理向量数乘运算律(1)(a)()a;(2)()aaa;(3)(ab)ab.知识点三向量共线定理思考1若b2a,b与a共线吗?答案根据共线向量及向量数乘的意义可知,b与a共线.如果有一个实数,使ba(a0),那么b与a是共线向量;反之,如果b与a(a0)是共线向量,那么有且只有一个实
3、数,使得ba.思考2若b与非零向量a共线,是否存在满足ba?若b与向量a共线呢?答案若b与非零向量a共线,存在满足ba;若b与向量a共线,当a0,b0时,不存在满足ba.梳理(1)向量共线定理向量a (a0)与b共线,当且仅当有唯一一个实数,使ba.(2)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a、b,以及任意实数、1、2,恒有(1a2b)1a2b.类型一向量数乘的基本运算例1(1)化简:2(2a4b)4(5a2b).解2(2a4b)4(5a2b)(4a8b20a8b)(16a16b)4a4b.(2)已知向量为a,b,未知向量为x,y,向量a,b,x,y满足关系式
4、3x2ya,4x3yb,求向量x,y.解由32,得x3a2b,代入得3(3a2b)2ya,所以x3a2b,y4a3b.反思与感悟(1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.跟踪训练1(1)计算:(ab)3(ab)8a.解(ab)3(ab)8a(a3a)(b3b)8a2a4b8a10a4b.(2)若2(cb3y)b0,其中a,b,c为已知向量,则未知
5、向量y_.答案abc解析因为2(cb3y)b0,3yabc0,所以yabc.类型二向量共线的判定及应用命题角度1判定向量共线或三点共线例2已知非零向量e1,e2不共线.(1)若ae1e2,b3e12e2,判断向量a,b是否共线.解b6a,a与b共线.(2)若e1e2,2e18e2,3(e1e2),求证:A、B、D三点共线.证明e1e2,2e18e23e13e25(e1e2)5.,共线,且有公共点B,A、B、D三点共线.反思与感悟(1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证
6、明两向量共线,需注意的是,在证明三点共线时,不但要利用ba(a0),还要说明向量a,b有公共点.跟踪训练2已知非零向量e1,e2不共线,如果e12e2,5e16e2,7e12e2,则共线的三个点是_.答案A,B,D解析e12e2,5e16e27e12e22(e12e2)2.,共线,且有公共点B,A,B,D三点共线.命题角度2利用向量共线求参数值例3已知非零向量e1,e2不共线,欲使ke1e2和e1ke2共线,试确定k的值.解ke1e2与e1ke2共线,存在实数,使ke1e2(e1ke2),则(k)e1(k1)e2,由于e1与e2不共线,只能有k1.反思与感悟利用向量共线定理,即b与a(a0)共
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高中数学 第二 平面 向量 2.2 运算 及其 几何 意义 导学案 新人 必修
限制150内