2019版高中全程复习方略数学(文)课时作业:第三章 三角函数、解三角形 23 .doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2019版高中全程复习方略数学(文)课时作业:第三章 三角函数、解三角形 23 .doc》由会员分享,可在线阅读,更多相关《2019版高中全程复习方略数学(文)课时作业:第三章 三角函数、解三角形 23 .doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、课时作业23解三角形应用举例一、选择题1(2018武汉三中月考)如图,两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40方向上,灯塔B在观察站南偏东60方向上,则灯塔A在灯塔B的()A北偏东10方向上B北偏西10方向上C南偏东80方向上D南偏西80方向上解析:由条件及题图可知,AABC40,因为BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80方向上答案:D2如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km,速度为1 000 km/h,飞行员先看到山顶的俯角为30,经过1 min后又看到山顶的俯角为75,则山顶的海拔高度为(精确到0.1
2、km)()A11.4 kmB6.6 kmC6.5 km D5.6 km解析:AB1 0001 000m,BCsin30m.航线离山顶hsin7511.4 km.山高为1811.46.6 km.答案:B3某船开始看见灯塔在南偏东30方向,后来船沿南偏东60的方向航行15 km后,看见灯塔在正西方向,则这时船与灯塔的距离是()A5 km B10 kmC5 km D5 km解析:作出示意图(如图),点A为该船开始的位置,点B为灯塔的位置,点C为该船后来的位置,所以在ABC中,有BAC603030,B120,AC15,由正弦定理,得,即BC5,即这时船与灯塔的距离是5 km.答案:C4在四边形ABCD
3、中,BC120,AB4,BCCD2,则该四边形的面积等于()A7 B6C5 D.解析:如图,取AB中点G,连接DG,则DGBC,AGD120.分别过B,C作DG的垂线,可求得BECF,DG4,所以四边形面积SSAGDS四边形GBCDAGDGsin120(DGBC)BE5.答案:C5如图,在离地面高400 m的热气球上,观测到山顶C处的仰角为15,山脚A处的俯角为45,已知BAC60,则山的高度BC为()A700 m B640 mC600 m D560 m解析:根据题意,可得在RtAMD中,MAD45,MD400,所以AM400.因为MAC中,AMC451560,MAC180456075,所以M
4、CA180AMCMAC45,由正弦定理,得AC400,在RtABC中,BCACsinBAC400600(m)答案:C二、填空题6(2018福州毕业班检测)在距离塔底分别为80 m,160 m,240 m的同一水平面上的A,B,C处,依次测得塔顶的仰角分别为,.若90,则塔高为_ m.解析:本题考查三角恒等变换设塔高为h m,则tan,tan,tan.又由90,得tan()tan(90),则,解得h80.本题的突破点是利用两角和的正切公式建立方程答案:807如图,一栋建筑物的高为(3010) m,在该建筑物的正东方向有一个通信塔CD.在它们之间的地面点M(B,M,D三点共线)处测得楼顶A,塔顶C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019版高中全程复习方略数学文课时作业:第三章三角函数、解三角形 23 2019 高中 全程 复习 方略 数学 课时 作业 第三 三角函数 三角形
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内