2019高三数学理北师大版一轮教师用书:第8章 第7节 双曲线 .doc
《2019高三数学理北师大版一轮教师用书:第8章 第7节 双曲线 .doc》由会员分享,可在线阅读,更多相关《2019高三数学理北师大版一轮教师用书:第8章 第7节 双曲线 .doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七节双曲线考纲传真(教师用书独具)1.了解双曲线的实际背景,了解双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).3.理解数形结合思想.4.了解双曲线的简单应用(对应学生用书第144页)基础知识填充1双曲线的定义(1)平面内到两定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线这两个定点F1,F2叫作双曲线的焦点,两焦点之间的距离叫作双曲线的焦距(2)集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0.当2a|F1F2|时,M点不存
2、在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRya或ya,xR对称性对称轴:坐标轴,对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,)实虚轴线段A1A2叫作双曲线的实轴,它的长|A1A2|2a;线段B1B2叫作双曲线的虚轴,它的长|B1B2|2b;a叫作双曲线的实半轴长,b叫作双曲线的虚半轴长a、b、c的关系c2a2b2(ca0,cb0)知识拓展1三种常见双曲线方程的设法(1)若已知双曲线过两点,焦点位置不能确定,可设方程为Ax2By21(AB0)表示焦点在x轴上的双曲线()(3)
3、双曲线(m0,n0,0)的渐近线方程是0,即0.()(4)等轴双曲线的渐近线互相垂直,离心率等于.()答案(1)(2)(3)(4)2(教材改编)已知双曲线1(a0)的离心率为2,则a()A2B CD1D依题意,e2,所以2a,则a21,a1.3若双曲线E:1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|3,则|PF2|等于()A11 B9 C5 D3B由题意知a3,b4,c5.由双曲线的定义|PF1|PF2|3|PF2|2a6,|PF2|9.4已知双曲线1(a0,b0)的焦距为2,且双曲线的一条渐近线与直线2xy0垂直,则双曲线的方程为()Ay21Bx21C1 D1A由题意可得解
4、得a2,则b1,所以双曲线的方程为y21,故选A5(2017全国卷)双曲线1(a0)的一条渐近线方程为yx,则a_.5双曲线的标准方程为1(a0),双曲线的渐近线方程为yx.又双曲线的一条渐近线方程为yx,a5.(对应学生用书第145页)双曲线的定义及应用(1)已知双曲线x21的两个焦点为F1,F2,P为双曲线右支上一点若|PF1|PF2|,则F1PF2的面积为()A48B24C12D6(2)(2017湖北武汉调研)若双曲线1的左焦点为F,点P是双曲线右支上的动点,A(1,4),则|PF|PA|的最小值是()A8B9C10D12(1)B(2)B(1)由双曲线的定义可得|PF1|PF2|PF2|
5、2a2,解得|PF2|6,故|PF1|8,又|F1F2|10,由勾股定理可知三角形PF1F2为直角三角形,因此S|PF1|PF2|24.(2)由题意知,双曲线1的左焦点F的坐标为(4,0),设双曲线的右焦点为B,则B(4,0),由双曲线的定义知|PF|PA|4|PB|PA|4|AB|4459,当且仅当A,P,B三点共线且P在A,B之间时取等号所以|PF|PA|的最小值为9.规律方法1.应用双曲线的定义需注意的问题在双曲线的定义中,要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点间的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019高三数学理北师大版一轮教师用书:第8章 第7节双曲线 2019 高三数 学理 北师大 一轮 教师 双曲线
限制150内