2019年高考数学一轮复习学案+训练+课件: 专题探究课6 概率与统计中的高考热点问题 .doc
《2019年高考数学一轮复习学案+训练+课件: 专题探究课6 概率与统计中的高考热点问题 .doc》由会员分享,可在线阅读,更多相关《2019年高考数学一轮复习学案+训练+课件: 专题探究课6 概率与统计中的高考热点问题 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、六)概率与统计中的高考热点问题(对应学生用书第193页)命题解读1.概率与统计是高考中相对独立的一个内容,处理问题的方式、方法体现了较高的思维含量该类问题以应用题为载体,注重考查应用意识及阅读理解能力、分类讨论与化归转化能力.2.概率问题的核心是概率计算,其中事件的互斥、对立、独立是概率计算的核心,排列组合是进行概率计算的工具,统计问题的核心是样本数据的获得及分析方法,重点是频率分布直方图、茎叶图和样本的数字特征,但近两年全国卷突出回归分析与独立性检验的考查.3.离散型随机变量的分布列及其均值的考查是历年高考的重点,难度多为中档类题目,特别是与统计内容渗透,背景新颖,充分体现了概率与统计的工具
2、性和交汇性统计与统计案例以实际生活中的事例为背景,通过对相关数据的统计分析、抽象概括,作出估计、判断,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查,考查数据处理能力,分析问题,解决问题的能力(2017全国卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图1所示:图1(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量50
3、 kg箱产量50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:P(2k)0.0500.0100.001k3.8416.63510.8282.解(1)记B表示事件“旧养殖法的箱产量低于50 kg”,C表示事件“新养殖法的箱产量不低于50 kg”由题意知P(A)P(BC)P(B)P(C)旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62,故P(B)的估计值为0.62.新养殖法的箱产量不低于50 kg的频率为(0.0680.0460.0100.008)50.66,故P(C)的估计值为0
4、.66.因此,事件A的概率估计值为0.620.660.409 2.(2)根据箱产量的频率分布直方图得列联表箱产量50 kg箱产量50 kg旧养殖法6238新养殖法3466215.705.由于15.7056.635,故有99%的把握认为箱产量与养殖方法有关(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg的直方图面积为(0.0040.0200.044)50.340.5,故新养殖法箱产量的中位数的估计值为5052.35(kg)规律方法1. 独立性检验就是考察两个分类变量是否有关系,利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测,并能较为准确地给出这种判断的可信
5、度;具体做法是根据公式2,计算随机变量的观测值2,2值越大,说明“两个变量有关系”的可能性越大.2.频率分布直方图中的众数、中位数与平均数.(1)最高的小长方形底边中点的横坐标即是众数;(2)平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标是中位数;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.跟踪训练(2018成都二诊)某项科研活动共进行了5次试验,其数据如下表所示:特征量第1次第2次第3次第4次第5次x555559551563552y601605597599598(1)从5次特征量y的试验数据中随机地抽取两个数据
6、,求至少有一个大于600的概率;(2)求特征量y关于x的线性回归方程ybxa,并预测当特征量x为570时,特征量y的值(附:回归直线的斜率和截距的最小二乘法估计公式分别为b,ab)解(1)记“至少有一个大于600”为事件AP(A)1.(2)556,600.b0.3.ab6000.3556433.2,线性回归方程为y0.3x433.2.当x570时,y0.3570433.2604.2.当x570时,特征量y的估计值为604.2.常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率是高考的热点,几何概型主要以客观题进行考查,求解的关键在于找准测度(面积、体积或长度);相互独立事件,互
7、斥事件常作为解答题的一问考查,也是进一步求分布列、均值与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖已知教师甲投进每个球的概率都是.(1)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及均值;(2)求教师甲在一场比赛中获奖的概率解(1)X的所有可能取值为0,1,2,3,4,5,6.依条件可知,XB,P(Xk)C (k0,1,2,3,4,5,6)所以X的分布列为X0123456P故EX(01112260316042405192664)4.或因为XB6,所以
8、EX64.(2)设教师甲在一场比赛中获奖为事件A,则P(A)CC,即教师甲在一场比赛中获奖的概率为.规律方法首先判断随机变量X服从二项分布是问题解决的突破口,对于实际问题中的随机变量X,如果能够断定它服从二项分布B(n,p),则其概率、均值与方差可直接利用公式P(Xk)Cpk(1p)nk(k0,1,2,n),EXnp,DXnp(1p)求得,因此,利用二项分布的相关公式,可以避免烦琐的运算过程,提高运算速度和准确度.跟踪训练甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为,乙队每人答对的
9、概率都是,设每人回答正确与否相互之间没有影响,用表示甲队总得分(1)求2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率解(1)2,则甲队有两人答对, 一人答错,故P(2);(2)设甲队和乙队得分之和为4为事件A,甲队比乙队得分高为事件B设乙队得分为,则B.P(1),P(3),P(1)C,P(2)C,P(3)C,P(A)P(1)P(3)P(2)P(2)P(3)P(1),P(AB)P(3)P(1),所求概率为P(B|A).离散型随机变量的分布列、期望和方差的应用离散型随机变量及其分布列、均值与方差及应用是高考的一大热点,每年均有解答题,属于中档题复习中应强化应用题的理解与
10、掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率的确定与转化是解题的基础,准确计算是解题的核心(本小题满分12分)(2016全国卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面如图2所示的柱状图:图2以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年高考数学一轮复习学案+训练+课件: 专题探究课6 概率与统计中的高考热点问题 2019 年高 数学 一轮 复习 训练 课件 专题 探究 概率 统计 中的 高考 热点问题
限制150内