人教版高中数学选修2-2学案:2.2.3数学归纳法(一) .doc
《人教版高中数学选修2-2学案:2.2.3数学归纳法(一) .doc》由会员分享,可在线阅读,更多相关《人教版高中数学选修2-2学案:2.2.3数学归纳法(一) .doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2.3数学归纳法(一)【学习目标】 1.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤;2.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;3.理解数学归纳法中递推思想.【新知自学】知识回顾:1.证明方法:(1)直接证明;(2)间接证明:_.新知梳理:1.问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?2.数学归纳法两大步:(1)归纳奠基:证明当n取第一个值n0时命题成立;(2)归纳递推:假设n=k(kn0, kN*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数
2、n都成立. 3.数学归纳法是一种完全归纳的证明方法,主要用于研究与正整数有关的数学问题.在基础和递推关系都成立时,可以递推出对所有不小于n0的正整数n0+1,n0+2,命题都成立. 对点练习:1.若f(n)1(nN),则f (1)为()A1BC1D非以上答案2.已知f(n),则()Af(n)中共有n项,当n2时,f(2)Bf(n)中共有n1项,当n2时,f(2)Cf(n)中共有n2n项,当n2时,f(2)Df(n)中共有n2n1项,当n2时,f(2)3.用数学归纳法证明:当为整数时,.【合作探究】典例精析:例1.用数学归纳法证明变式练习:用数学归纳法证明例2.用数学归纳法证明:首项是,公差是的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高中数学选修2-2学案:2.2.3数学归纳法一 人教版 高中数学 选修 2.2 数学 归纳法
限制150内